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Terms and abbreviations

Table 2: Terms and Abbreviations

Abbreviation/ Term Meaning
CL Chlorine, either Free or Total, depending on station. Typically measured in
mg/L

TU
REDOX/ORP
COND

FL

Water quality
measurements
Filtering

SM

Time series, Time Series

Analysis
EDS Detectors

EDS
Correlation

Autocorrelation
function (ACF)

Cross-correlation
function (CCF)

Robust correlation
measures
Bootstrap

Turbidity measurement. Typically in NTU units

Oxidation-Reduction Potential. Typically in mV units.

Conductivity. Typically in uS/cm units.

Flow. Typically in m3/S

Chemical and Physical measurements for water quality. Examples are the
above measurements

Removing irregular, extremely noisy or non-representative observations from
the data.

Spatial Model

A series of measurements taken across different times. Time series analysis —
the statistical practice of analyzing time series to gain insights.

A statistical module in the Detector EDS (Decision Makers' product) designed
to detect a specific type of effect or abnormality in the data.

Event Detection System.

A summary statistic quantifying how much does a change in one numeric
measurement explain the change in a second numeric measurement.

A function quantifying how much is a time series of measurement correlated
with a time-shifted version of itself. The input argument is the size of the time
shift. The computed value is the quantity of auto-correlation, or self-
correlation. See section 2.1.1.

A function quantifying how much is a time series of measurement correlated
with a second time series, after inducing a time-shift to the second series. The
input argument is the size of the time shift. The computed value is the quantity
of cross-correlation, or correlation between series after a time shift in one of
them. See section 2.1.2.

A correlation measures whose value is relatively stable even if noisy
measurements are found in the data.

A statistical resampling procedure, where a set of samples are chosen from
the original data. The

Prediction models

Constant Shift model
Linear Model
Kernel regression

Model
Pair

A statistical model predicting the value of a numeric variable (in our context),
based on the value of another numeric value. The first variable is referred to
as the dependent variable, and the latter as the independent variable. See
Section 2.5 for discussion of prediction models.

A type of linear model between X and Y, of the form Y = X + b, explained in
subsection 2.5

A type of linear model between X and Y, of the form Y = aX + b, explained
in subsection 2.5

A type of non-linear prediction model, explained in subsection 2.5. The model
has no closed formula form, and is data adaptive.

SM model predicting the measured value of a station downstream based on a
station upstream.




Triplet

SM model comparing a triplet of station for detecting abnormal combinations.

Flow time

The time required for a drop of water to travel between two points in the
network.

Estimated flow time
Flow regime

Flow-time adjustment/
Lag adjustment

Window of
measurements
Score function /
Objective function

Flow regime selection

Prediction, Predicted
Value
Error distribution

Confidence Interval for
Prediction/ Cl

Triplet types

Spatial Model alarm
types

Network states

EDS alarms

Reports

Quizzes

An estimation for the real flow time, computed using the change in water
quality measurements in the two stations. See Algorithm in Section 3.2

A set range of times, in certain days or hours, where the flow time is
approximately fixed.

(Relevant when referring to water quality measurements in both a source
and target station) We explain using an example: Assume water takes 3 hours
to flow between a source station and a target station. The flow-time adjusted
measurement associated with the 8PM measurement at the target station, is
the 5PM measurement at the source station. See Section 3.5.1. for a complete
definition.

In a time series of measurement, a subset of the series measured across some
time interval, say , a window of three hours.

A function giving for two time series (perhaps in a specific flow regime), and a
flow-time value u, a score of well does a flow-time of u explain the correlation
between the two time series.

A statistical analysis process in which different times of the day, and days of
the week, are classified into different flow regimes based on auxiliary
measurements such as flow meters, or prior knowledge about the operational
nature of the water distribution network.

The statistical method of generating a prediction for numeric value (in our
context), based on explanatory variables.

The empirical distribution of differences between measurements and the
predicted values, i.e. the distribution of prediction errors.

A range of values, around the predicted value, where the actual measurement
will likely be found, with high probability.

Three possible types: Line, Fork-in, Fork-out triplets.

The types of SM alarms are: Limits violation, Poor limits, Poor prediction, No
data, Triplet Alarms. See Through discussion the at start of Unit C.

A water distribution network can be found in 1 of 4 states:

State E: Water supplied from an external source

State R: Water supplied from reservoirs

State E->R: Network is transitioning from state E to R.

State R>E: Network is transitioning from state R to E.

Alarms raised by the EDS, due to one of its detectors. Operators are notified
regarding alarms. One of the alarm generating detectors is a detector
connected to SM events, see Section 4.7 for additional details.

HTML reports on SM statistical models, and historical alarms. See Section 4.12
for server-side reports, and Section 4.11 for reports on the client-side
software.

Every one of the three units in this training program ends with a short quiz.



1. Introduction

This document serves as a training program for the Spatial Model (SM) module of the Detector EDS (Event
Detection System) developed by Decision Makers. The training program is aimed for users operating the
Detector software, together with the SM module, but it may also be useful to water utility personnel
operating other SCADA/monitoring systems and seeking to improve their event detection capabilities.
This document is also meant to be used as a hand-out field-manual, in a 1-2 day workshop introducing
the SM.

This document is self-contained and can be read front to back without previous knowledge of statistics.
We attempt to bring readers up-to-speed on all the statistical and data-analysis techniques needed in
order to understand how the SM is able to estimate flow time between network locations and monitor
water quality data for abnormal events.

The structure of the document is as follows. The training program is comprised of three units:

e Unit A —"Statistical Prerequisites"
e Unit B - "Algorithmic and Statistical Methodology"
e Unit C- "The Spatial Model Software"

Unit A discussed several background subjects relevant to the SM methodology, such as typical errors in
data, measurement error filtration, Auto-correlation and Cross-correlation, Non-Parametric measures of
association and prediction models.

Unit B discusses in-depth the algorithms used by the spatial model. The unit begins with a "bird's eye
view" of the SM, and the problems it is meant to address. Specifically, we provide motivation for
comparing pairs and triplets of sensors across a network in order to pinpoint the location of water quality
events better. The unit introduces the SM score function, a non-parametric equivalent of the cross-cross
correlation aimed at estimating the time required for water to flow between network measurement
locations (henceforth known as "flow time", "lag time" or "delay time"). Afterwards, the unit proceeds to
describe how to make use of the flow time estimate in order to train prediction models for water quality
at different network locations. Models for pairs and triplets of sensors are described.

Unit C introduces the SM software module of the EDS. The unit reviews the SM module screen-by-screen
and describes: how the water quality can be monitored using the SM; how the SM connects to the exiting
EDS alarm management system; how models for pairs or triplets can be built; and how their performance
can be reviewed. The different methods and algorithms presented in unit B are implemented in the
software presented in Unit C. Therefore, at the start of each lesson in unit C, we describe which lessons
in Unit B are most relevant to the current discussed screen/model.

Each lesson in Units A and B introduces a few concepts and should take no more than 10-15 minutes to
go over. After a short intro, several examples based on real data would be given, usually in the form of
graphs and figures.

Each unit concludes with a short quiz, 30 minutes in length, aimed at testing if the main concepts of the
Unit were understood. Quizzes are usually comprised of 15-20 questions, most of which are multiple-
choice. Answers to the quizzes are given after each quiz.



2. Unit A - Statistical Prerequisites

2.1 Introduction to Time Series Analysis

A time series is a series of repeated measurements from the same source of data, e.g., a water quality
measurement device, across time, usually at fixed and predetermined intervals. The statistical study of
time series was developed significantly in the 1980s, in order to provide analysis methods for economical,
meteorological, and physical science datasets. Unit A will focus on preliminary concepts in the analysis of
time-series data, that will be relevant the theory and application of the Spatial Model (SM) module of the
Detector EDS.

Time series analysis methods include both descriptive statistics of time series data, along with advanced
modeling methodologies. The key assumption in analyzing this data is that data points are measured over
fixed time intervals. Many times, this assumption is not met by the data. For example, for water quality
measurements, e.g., turbidity and conductivity, data is collected at varying time resolutions at a different
location at the network. Moreover, field analyzers may have some jitter in their measurement times: while
measurements may ideally be taken every minute or 10 minutes, some measurements may be unavailable
or may be delayed due to technical difficulties at field analyzers. Problems that may include this type of
jitter include faulty measurements that are discarded or redone or temporary lack of communications.
The next example will demonstrate differences in time resolutions across different sampling locations in
a water distribution network.

Example 2.1A - varying time resolution: (Figure 1 shows a time series of conductivity measurements,
across a month of data. Measurements are taken every minute (60 seconds), forming 1440 data points
per day. A key property of water quality time series data is observed in the graph: consecutive

WOER0 EGD  GOTE MNUES ANOAK
-

Figure 1: Example for varying time resolution - conductivity measured at upstream station at 1 minute intervals,



measurements are highly correlated. This feature of water quality time series data is called auto-
correlation ( "the correlation of a series with itself") and will be discussed shortly. Water quality time
series data is expected to be "smoother" across time as it is measured deeper, or downstream, into the
water distribution network. The larger the volume of water producing the measurements, the more time
and water volume were available to attenuate changes in the water quality originating at the water source
for the water distribution network. In fact, abrupt changes in water quality that cannot be explained, e.g.,
are not maintenance work, may be indicative of a water quality event.

Figure 2 shows time series data for conductivity from a nearby station in the network, for the same dates.
Characteristic water flow in this network involves water measured in the station depicted in Figure 2,
typically 2-3 hours after being measured in the station depicted in Figure 1. This can be verified by the
same "curve" of conductivity measurements appearing almost identically at the two stations. However,
there is a key difference between the two water quality analyzers in Figures 1 and 2: while the analyzer in
Figure 1 measures conductivity once every minute, the analyzer in Figure 2 measures water quality only
once every 5 minutes. The reason for the difference is that the first analyzer is connected to power in a
water monitoring facility, and therefore can gather measurements continuously. The second series of
measurements were collected by a battery-powered water quality analyzer. This form of low energy
measurement device collects information once every 5 minutes and transmits collected data once every
two hours. Lower sampling rates allow for longer battery life (possibly spanning years), and for
measurements to be gathered at locations were power or facilities are not easily available.

Conductivity

¢

Wt

T T
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Dates

Figure 2: Example for varying time resolution - conductivity measured at downstream station at 10 minute intervals,
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While the data series in Figure 1 contains more data points, it does not contain additional information on
the underlying water quality. Due to high autocorrelation ("smoothness") of conductivity data, a single
measurement once every 10 minutes is sufficient in order to describe water conductivity up to a change
in 1-2 uS/cm.

Analysis of time series data usually involves treating data as a series of equally spaced points in time.
Moreover, for different time series to be compared, the temporal sampling resolution of different series
needs to be identical. With equal temporal resolution, if the first measurements of two series are aligned
in time, so are all succeeding measurements. Therefore, a mandatory preprocessing step for time series
analysis is to coerce data to a fixed grid of measurements in time.

When working with time-series data in the SM model, one method for coercing time-series data to
predetermined, fixed resolution grids of measurements would be to consider the median value in fixed
time intervals bins. For example, the two data series shown in Figures 1 and 2 could be preprocessed to
two series of measurements, with median taken over 30 minutes intervals, starting from 2020/03/25
21:30. After aggregation by medians, the two time-series could be written as :

X1,X5,X3, ..., Xy
Y1,Y,,Y3,..., 7,

with different X's and Y's corresponding to the median values of conductivity in 30-minute intervals in the
first and second time-series, respectively. X; would correspond to the median value of conductivity
measured in station 1, with the median taken across measurements from 2020/03/25 21:30 to
2020/03/25 21:59 (30 measurements total). X, would correspond to the median value of conductivity
measured in station 1 across measurements from 2020/03/25 22:00 to 2020/03/25 21:29. Y; would be
computed by taking the median of all conductivity measurements between 2020/03/25 21:30 to
2020/03/25 21:59 (5 measurements total, since station 2 measures once every 5 minutes). The slots in
the temporal grid collecting measurements will be referred to as bins.

This method has the benefits of coercing two data series to the same temporal resolution while avoiding
jitter in measurement times. A favorable side effect of this method is that extremely noisy measurements
("spikes") in the data, unrepresentative of the actual water quality, are filtered out from the data if
adjacent measurements in time are without extreme noise (for example, given five values, one of which
is an outlier in measurement, the median value of the five measurements is not affected by the outlier).
Types of errors and noise in data, ways to counter them, will be the topic of Section 2.2.

The above method is fully valid when analyzing historical data. However, when analyzing on-line data,
data becomes valid as time progresses. Consider a case where we wish to assess the conductivity value in
station 2, as of 21:04. Taking the median value of all measurements collected between 21:00 and 21:30
as of 21:04 would result in taking the median of a single measurement collected at 21:00. The next
measurement for this bin in the time grid will be available (hopefully) only at 21:05. Since this single
measurement may be faulty, the representative median value may still be unreliable. A solution to this
problem is to partition measurements into 15-minute bins in time (instead of 30-minute bins), and take
the representative values in each time point to be the median over the two most recent time interval
bins. The key idea is that while a single bin might contain only a single measurement (making the median
vulnerable to noisy data points), two bins will always contain more than a single data point. For example,
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using this approach, the representative value at 21:04 will be computed by taking the median value of the
measurements collected at 20:45,20:50,20:55, and 21:00.

Whenever computing a median value for an even number of values, The median will be taken to be the
average of the two most central measurements. If we ever encounter a setting where we need to compute
the median of 2 measurements, the median will simply be the average of the two measurements.

2.1.1 Autocorrelation

Previously, we have observed water quality time-series data to be relatively smooth, with measurements
in high proximity in time also being in high proximity in value. Without delving into definitions, we called
such time series highly autocorrelated. In this subsection, we properly define the autocorrelation of a
time-series and present several properties of this autocorrelation with respect to time series data.

Before we define autocorrelation, we recall the definition of the Pearson correlation coefficient. Section
2.3 will discuss several types of correlation in-depth, but for now, recalling the Pearson correlation will
suffice.

Consider two vectors of observations:
X, X5, 0, Xn
V.Y, .., Y,

It is assumed that X; and Y; were measured jointly, X, and Y, were measured jointly, and so on. For
example, X and Y measurements could represent pH and Conductivity measurements taken at the same
station, jointly, at 8 am, with different pairs of measurements (corresponding to index subscripts)
representing different days. A possible statistical question of interest is how values of X and Y vary
together: When X increases, is it likely to see Y increase/ decrease/ remain constant? Correlation analysis
quantifies the strength of the statistical relationship between two quantities, both in terms of
directionality (increase/ decrease) and magnitude (a slight increase compared with a large increase).

In terms of notations, the notations X;.,, and Y;.,, will be used to denote the two series of measurements,
with n measurements in each series. When referring to a sub-series (part of a series) of measurements,
we will use the notation, Xstgrt.ena » With start and end denoting two indices, to denote the sub-series

Xstart' Xstart+1r ey Xend—l: Xend:

a sub-series including end — start + 1 values total. Let mean(Xsqrt.ena) and sd (Xseart-ena) denote the
mean and standard deviation of a series of measurements, respectively. The sample Pearson correlation
coefficient between two series of joint measurements is defined to be:

Xy Vi) = - i - i <Xi - mean(Xl;n)> <Yi - mean(Ylm))
i=1

Sd(Xl:n) Sd(yl:n)

This value can be thought of as the mean product of time series values, with each series normalized to
have a mean value of 0 and a standard deviation of 1.

The Pearson correlation coefficient has value within the range -1 to 1 (including -1 and 1), with negative
values describing a negative association (when X is smaller than it's the mean value, Y tends to ba larger
than it's mean value) and positive values describing a positive association (when X is smaller than it's the
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mean value, Y tens to be smaller than it's mean value as well). A similar value called the sample covariance
is given by:

n
1
cov(X1.n, Y1) = mZ(Xi — mean(Xy.,))(Y; — mean(Yy.,)).
i=1

This value is not constrained to the range [—1,1], since the two series of measurements were not
normalized.

We proceed to describe the sample autocorrelation function of a series of measurements. The
autocorrelation function of a series of measurements (X;.,), is given by:

ACF(Xl:n' 6) = 7"(X(5+1):nlXl:(n—&))
n-6-1

1 z <X5+i - mean(x(6+1):n)> <Xi - mean(x1:(n—5))>
=1

n—=4 sd(X(5+1):n) sd(X1:(n-s))

For each value of &, the value of ACF (X;.,, ) gives the Pearson correlation value between X;.,, with the
first § measurements removed and X;.,, with the last § measurements removed. Intuitively, ACF (X1.,, §)
gives the correlation of X's with a lagged version of the X's, with the lag being & time units behind.

The value of ACF(X;.,,0) is always 1 since the correlation of the data with itself is always 1. As delta
increases, the value of ACF(X;.,,8) tends to decrease. If the series of X's is relatively smooth across
changes in time, the decrease of ACF (X;.,,, 8) across values of § is slow, since the series X looks almost
the same, after shifting it § measurements in time. The following example demonstrates the relationship
between time series smoothness and how the ACF changes by 6.

Example 2.1B - Time-series smoothness and the ACF: Figures 3 and 4 show Total Chlorine as measured
across a month in two sampling locations across a water distribution network. The sampling location
depicted in Figure 3 is placed a few hours of water flow away from the main entry point of water to the
city. The city is supplied with chlorinated water from an intercity water distribution system. Figure 4 shows
total chlorine at another sampling location, however, this sampling location is in a different DMA, from
the location depicted in Figure 3. All water passing into the DMA must pass through a large reservoir. We
can observe changes in chlorination levels across the graphed time period, as chlorination levels in Figure
3 vary in a daily manner. These changes in chlorination are unobserved in Figure 4, since chlorination is
almost constant for water coming from the reservoir. The time series observed in Figure 4 is smoother
than the one observed in Figure 3 and has less changes across time. After Figures 3 and 4, we continue
the discussion, and show how this form of "smoothness" is translated into the change rate of the ACF
across 6.

13



EE I | I I
210401 0 2BOAA07 (448 G043 08% 201G04N 144 AB04R: 1312 21G0502 00

\ M J

Figure 3: Total CL measured during a month, in data analyzer connecter directly to an intercity water source.
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Figure 4:Total CL measured during a month, in data analyzer downstream from a large water reservoir.The water reservoir itself
is filled from the same source as the sampling station in Figure 3. Note the drop at 2018/04/08 in baseline values due to sensor
calibration.
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Figure 5 shows the ACFs for the total CL time series in the two sampling locations depicted in Figures 3
and 4. The ACFs were evaluated over three months of data, starting from 2018/04/10 (removing the
calibration event), with data aggregated to hourly median values. Observations larger than 0.5 mg/L or
smaller than 0.345 mg/L were removed prior to analysis. As expected, both ACFs have a value of 1 for a
lag (&) of 0 hours. As the lag increases, the ACFs decrease in value; however, their decrease occurs at
different rates. We observe the ACF for the second sampling station (Figure 4) in red to decrease at a
slower rate, than the black ACF, describing the first sampling station (Figure 3). The slower decay of the
ACF indicates a higher correlation of the data time series compared with time-dilated versions of itself.
This results from the higher smoothness of the time series.

Interestingly, the black ACF reaches negative values, indicating negative autocorrelation for some lag
values. Negative ACF values are frequent in periodic time series data, were certain lags (§s) may cause
the maxima and minima of the data, and its respective time dilated version to overlap.

On the next page, we discuss why it was crucial to remove the calibration event from the data before
computing the ACF.

o |
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— Second station
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Figure 5: ACFs functions for total CL time series in the sampling locations shown in Figures 3 and 4. ACFs were computed for three
months of data, starting from 2018/04/10 (removing the calibration event). Data was aggregated to hourly median values across
bins before computing ACFs. Observations larger than 0.5 mg/L or smaller than 0.345 mg/L were removed prior to analysis.
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Figure 6 shows the ACFs for analysis similar to the one presented in Figure 5, with one crucial difference:
analysis was performed for data starting from 2018/04/01 and up to 2020/04/14, so the calibration event
of 2018/04/08 in the second time series was included. With the calibration event included, we observe a
peculiar behavior: despite the second station having locally (in time) smoother measurements, it's ACF
not descends substantially faster and reaches and ACF value of 0 at § = 50 hours. The reason for the for
this linear descent! in the red graph originates from the calibration event at 2018/04/02. Having a
calibration event in the data changes the "data series mean" substantially for different values of §. Since
the baseline measurement value changes, the subtraction of data means (in the ACF definition) makes
the ACF incomparable for different values of §. Section 3.2 in Unit B will discuss how calibrations are
accounted for in the SM.
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Figure 6: ACFs similar to the ones presented in Figure 5 (see figure description for details); however, the analysis was performed
for data starting from 2020/04/01 and up to 2020/04/14, and with the calibration event in the second station included.

1 To those recalling functional analysis, the ACFs mimics the convolution transform of a step function with another
(shifted) step function.
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2.1.2 Cross-correlation
We proceed to define the cross-correlation function (CCF). Suppose we observe to series of
measurements:

X, X5, 0, X,
V.., ...V,
then the cross-correlation function for a positive lag, § > 0, is defined to be:

CCF(Xl:n' Yl:n' 6) = T(X(5+1):nl Yl:(n—&))
n-6-1

1 z <X5+i - mean(x(6+1):n)> <Yi - mean(Y1:(n—5))>
=1

n—=4 sd(X(5+1):n) sd(Y1:(n-s))

For a negative lag, § < 0, we can compute the CCF value using CCF (Y;.p, X1.n, —8). If the ACF, at some
value &, describe the correlation of the X's with a time dilated (§ units in time) version of themselves,
then the CCF at value &§ describes the correlation between X's, and a time dilated version of the Y's, for
some value of §. The next example will demonstrate why the CCF is useful in our analysis of water quality
data.

Similar to the autocovariance function defined in Section 2.1.1, one may also define the cross-covariance
function by avoiding the division by sd(X(541).:n) and sd(Y1.(n—s)) in the above expression.

Example 2.1B — The CCF and it relation to spatial water quality patterns in the water distribution
network: Figures 7 and 8, describe two time series of conductivity measurements taken at a Source and
Target station, respectively. The data displayed in the graphs is from Match-April 2017. Water flows in
this network from the Source station to the target station. We can see the changing pattern of conductivity
is similar in both stations. Looking at Figure 9, showing a scatterplot of median hourly values across a 45
day period, we see the measurements in both stations are highly correlated. We continue discussing the
CCF for this data after Figure 9.
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Figure 7: Conductivity measurements for a time period of 40 days in a Source station. Water from this station flows to the
station described in Figure 8 (the Target station).
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Figure 8: Conductivity measurements for a 55 day period in the Target station, receiving water from the Source station depicted
in Figure 7.
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Figure 9: Scatterplot for conductivity measurements from the Source and Target stations, depicted in Figures 7 and 8,
respectively.Each point represents a joint measurement taken from the two stations at the same hour, with X and Y values
representing hourly median values.

Figure 10 shows the Cross-correlation Function (CCF) for the two conductivity time series, computed over
45 days of data, after aggregating the datapoints to hourly medians. We note that unlike the ACF, which
considered only positive lag values, the CCF considers both positive and negative lag values. Both positive
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and negative lags can be considered, since the correlation of series of X's can be computed with both a
right-shifted or left shifted version of the series of Y's.

The CCF shows a distinct peak at a lag of three hours, suggesting the time required for water flow
between the two stations is roughly 3 hours. This is a very coarse estimate since:

I) There is no reason to assume the time required for water to flow is constant at all times.

II) There is no error estimation for the lag of three hours: are 45 days enough to provide an estimate?
Will a different time period produce a different number? And if so, by how much?

[1I) We have no certainty the outliers in the data may bias the lag value at which the CCF receives its
maximum value.

Throughout Unit A, we will describe tools that allow us to address issues I-ll. Unit B will implement these
tools altogether in order to address the above challenges.
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—

ccf
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Lag [Hours]
Figure 10: CCF for the conductivity data from the Source and Target stations, computed for for a 45 day period starting from
2017/03/04. Data points were aggregated to bin, and hourly median values were used to represent measurements before
analysis.
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Figure 11 shows concurrent, hourly median, conductivity measurements for the two measurement sites
depicted in Figure 7-9, for a time span of 300 days. The data includes several calibrations of conductivity
sensors throughout the time period, as observed by the 'jumps' between several linear relations in the
data, featuring several different slopes. Figure 12, shows the CCF for the data depicted in Figure 11. While
the CCF has a maximum present at LAG=3 Hours, it is much less distinct than the maximum presented in
Figure 10 (avoiding a technical definition for 'maximum distinctiveness' at the moment). The flattening of
the CCF is mostly due to normalization being done with means and standard deviations computed over a
longer time period, containing several sensor calibration configurations. Unit B will address flow time
estimations for time periods with several calibrations in detail.
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Figure 11: Conductivity measurements, for the two stations described in Figure 9, across a timespan of 300 days.
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2.2 Irregular measurements and filtration methods in Time Series Analysis.

In Section 2.1, we have seen in Example B how a change in the baseline of sensor measurements, due to
sensor calibration can bias analysis results. Careful analysis of the data and filtration of the calibration
event, allowed the analysis in Example B to reach the required result (relate between the ACF decay rate
by lag and data smoothness). Generally, data preprocessing and filtering must be performed before any
statistical analysis. However, certain types of outliers and noise patterns are unique to water quality data
and require specialized preprocessing. In Section 2.2.1 we detail several known forms of outliers common
to water quality data. In Section 2.2.2, we describe possible solutions to the faulty data forms presented
in Section 2.2.1. The solutions presented in Section 2.2.2 will be implemented throughout the Spatial
Model methodology described in Unit B.

2.2.1. Some common forms of outliers in water quality data.

Fixed value — Figure 13 shows pH, Free-CL, and Turbidity measurements across a time span of two days.
The turbidity measurements are fixed across the two days. This result is very unlikely since a constant
level of turbidity may be experienced at levels close to zero (increased variance for turbidity is associated
with an increased the baseline value), but not at values around 0.4 NTU. This type of phenomenon most
likely indicates a problem at the analyzer level, since other measurements show valid values.
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Figure 13: pH, Free CL, and TU measurements for a time span of two days, as measured in a water quality analyzer. Turbidity
measurements are fixed across the two days, but pH and Free CL measurements vary, indicating a problem with the turbidity
measurement, most likely at the analyzer level.

Communication problem — Figure 14 shows water quality data for three measurements, pH, Turbidity,
and Free CL, for a time span of 24 hours as measured by a water quality analyzer. We observe a drop of
all three measured values to zero, around 07:44 AM (marked by a red rectangle). This concurrent drop to
zero can be due to a communication failure between the analyzer to the SCADA system, or due to a
hardware failure at the analyzer level. A drop to zero in all three measurements indicates this data point
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should be removed from all future analysis. Typical values for communication faults or hardware failures
include the value 0, the value 65535, the value 999 or negative values.

A A A MO TN N

| lis
Figure 14:A drop to zero for three conqurenet measurements at water analyzer, at the same time. This phenomenon in the data
indicates a communucation failure.

10 jump — Figure 15 shows a spike, for a single measurement, in three different measurements of the
same water quality analyzer at the same time. Such jumps can be due to a voltage spike or a hardware
fault in analog 10 channels used to connect the water quality analyzer to a controller.
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Figure 15: A concurrent jump in all three measurements due to a spike in 10 analog channels.
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CL drop — Figure 16 shows a drop in measured Free-CL values, at three single measurements (marked by
red arrows). These drops in Free CL measurements are due to a faulty measurement, and do not
represent the underlying levels of Free CL in the water.
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Figure 16: A time series for Free CL measurements. Single measurements are "negative spikes", o drop from the base line value.

Calibration — Figure 17 shows a calibration event in the data sample. The drop in turbidity values is due
to scheduled maintenance and cleaning of the measurement compartment of the analyzer. Free CL
measurement experience extreme high and low values due to the use of buffers in calibration.
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Figure 17: an event of sensor calibration and maintenance in the data in the data. A drop in turbidity is due to scheduled
maintenance and cleaning of the measurement compartment of the analyzer. The change in CL is due to use of buffers in
calibration.
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2.2.2. Some simple, yet useful, ways to filter out faulty data measurements in water quality data.

Temporal binning and use of representative values — outliers and faulty measurements can be removed
from the data, by binning the data points by their timestamps and taking the median of measurements
within each bin as the representative value for measurements. Time series analysis and modeling can
proceed by performing analysis on bin representative values instead of raw measurements. This approach
was discussed in detail in Section 2.1.

Filter out by variable specific limits — Variables can be given upper and lower thresholds, limiting the
measurements considered valid for analysis. For example, pH values above 8.5 or below 6.5 can be
regarded as sensor malfunctions and can be removed from the data. Setting limits for valid variable
measurements is location and time-specific, and involves looking at the distribution (histogram) of
measurements, taken over an extended period of time.

Removing measurements that are constant across long periods of time — Water quality data may include
measurements that are constant for extended periods of time, either to communication problems with
analyzers or due to hardware faults. While a few consecutive measurements carrying the same value may
not be due to an error, measurements that are constant across long periods of time are improbable. These
fixed measurements should be removed from the data before performing analyses of the data, and even
before the temporal binning of data, since fixed measurements misrepresent the underlying water quality
values, and thus may bias analyses' results. Choosing the cutoff time period, after which a time interval
with fixed measurement values should be removed, is location and measurement specific, as we show in
the next example.

Example 2.2 A - removing data from extended time periods with constant measurements — For this
example, we consider the Flow values as measured at the exit point from a water reservoir, providing
water to a large residential district. Flow measurements are given in m3/h, with typical values of 500-700.
Analyses of flow measurements will be the main focus of Section 3.3 in Unit B, discussing the partitioning
of water quality data to different flow regimes based on the distribution of water flow measurements.
Therefore, preliminary preprocessing is required in order to ensure faulty flow measurements do not
compromise the results of the analysis.

Throughout the two years of flow data gathered from the selected station, there are several time
durations with values of zeros. These zeroes represent a technical error rather than actual zero flow for
continuous times. Figure 18 gives the distribution of the lengths of time, in minutes, for the different
periods where no flow were reported. Bins for the histogram are 20 minutes long. For example, if we
observe the red arrow in Figure 18, we have a single “no-flow” event which lasted over 800 minutes, 5
events which lasted between 600 to 800 minutes (green arrow) and over 150 “no flow” events which
lasted no more than 20 minutes (most of which lasted for a single measurement, blue arrow). All time
periods with zero flow measurements that are above 30 minutes in length sum up to several days worth
of data that should be removed from all further water flow analyses.
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Figure 18: Histogram showing the distribution of of time period length having fixed flow values at a flow meter located at a water
reservoir exit. The blue arrow shows most time period with fixed measurements are under 20 minutes, and are mostlikely a few
consecutive measurements with the same values. The green and red arrows show 5 events with no flow measurements for at
least 10 hours (600 minutes), and single time period with fixed flow measurements for over 800 minutes, respectively.

Remove calibration and water quality events — Some water quality events and time periods, including
maintenance, are better removed from the data, before performing certain analyses. Scheduled
maintenance and sensor calibration usually require some manual interference with the water measured
by the sensor, e.g., disconnecting from the water line in order to clean measurement compartments, and
using premade water samples for calibration. Sampled values do not represent the underlying water
properties in the network, and should be removed from analyses.

Abnormal water quality events inserted into the data used to determine the threshold for declaring future
water quality events may bias to thresholds, and make them more conservative, at the danger of a "false
negative": missing future water quality events. Therefore, abnormal water quality events need to be
removed from any analysis used to determine alarm thresholds. However, analyses used to determine
flow time between stations may benefit from using data from abnormal water quality events that
observed traveling through the water distribution network at different times at locations.

Ranking — Ranking is a data transformation replacing a series of measurements by their respective
ranks, from 1 to N. For example, ranking the observations 5,8,6.5,32,9 would lead to the ranks 1,3,2,5,4.
The purpose of ranking is to confine the possible values the data may take to a predetermined set of
values that A) is known in advance, and is scale agnostic B) is unaffected by outliers in the data and C)
maintains their relative ordering.
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A data transformation that can be given as a counterexample, for upholding criteria A-C is normalizing
data sets by subtracting the mean of sample values from the data. The sample mean may be highly
sensitive to noise in the data, and hence may "mean subtraction" may compromise further analyses.

We note that rankings are only interpreted within a sample. If a measurement was given the rank 46, out
of 52 measurements, there is no way of knowing what exact rank it will obtain in another sample.
Moreover, ranking a single sample is irrelevant — it will always receive the rank of 1.

While ranking upholds properties A-C described above; some analyses are cannot be performed on ranks,
setting thresholds for irregular events or finding the baseline measurement value for some sensor.

A form of analysis which can benefit from ranking observations before analyses, is computing correlations.
If two series of measurements are positively correlated, measurements with high values in the first series
are likely to be associated with measurements with high values in the second series. This association can
still be observed in ranked datasets: if both data series are ranked, measurements with high ranks in the
first series are likely to be associated with measurements with high ranks in the second series. Analyzing
correlations over ranks, rather than over the raw data, ensures that correlation estimates do not hinge on
outliers in the data. Robust measures of correlations for data analysis will be the our next topic of
discussion in Section 2.3.
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2.3 Correlation and Non-Parametric Correlations

In Section 2.1, we showed how correlation coefficients may provide insights when discussing time series
smoothness, or the relationship between one time series of measurements to another. In Section 2.2, we
presented several types of measurement errors and outliers in the data. At the end of Section 2.2, we
briefly introduced the idea of transforming data measurements to ranks prior to analyses. The purpose of
this subsection is to extend the discussion to other correlation measures (other than Pearson), that are
robust to outliers in the data . The next example will serve as a working example for most of the
subsection.

Example 2.3A — simulated dataset for discussing the effect of outliers on correlation estimation: Figure
19 shows a simulated dataset with 50 data points. The X,Y values were simulated from a data generating
process, causing them to have a mild but distinct positive correlation, as seen in the graph. We are
interested in testing how the Pearson correlation coefficient will respond to noise added to the first
(leftmost) data point in the chart.

(Example cont. on next page)
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Figure 19: A simulated data sets with 50 data points, showing a positive correlation.
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Figure 20 shows 5 augmented version of the data presented in Figure 19. In each version of the data, the
Y value of the first measurement was increased by either 0 (no change in value), 0.5,1.0,1.5 or 2.0. The
first point is marked in red to show it's movement across different versions of the data.
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Figure 20: Five augmented versions of the data presented in Figure 19, with varying levels of noise added to the first
measurement. The single point moved between different versions of the data is marked in red.

We proceed and calculate the Pearson correlation coefficient for the five datasets presented in Figure 20.
Figure 21 (on the next page) shows the Pearson correlation coefficient as a function of the level of noise
inserted, for the five datasets displayed in Figure 20. We observe the Pearson correlation coefficient
decreasing as a function of the level of noise added. We conclude the Pearson correlation coefficient is
not a robust measure of correlation: even a single measurement may affect the estimated correlation.
The problem this subsection will address is how to define correlations that are insensitive to outliers in
the data.
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Figure 21: The Pearson correlation coefficient as a function of the amount of noise added, for the five augmented datasets
presented in Figure 20.

Robust correlation measures

We present two robust measures of correlation: Spearman's correlation coefficient, and Kendalls' tau.

Spearman's correlation coefficient is defined to be the Pearson correlation coefficient of the ranks of X
and Y. In order to compute the Spearman correlation coefficient, both sets of coordinates, X and Y, are
replaced by their respective ranks, and the Pearson correlation coefficient is computed as-is over the rank
transformed data set.

In order to define Kendall's tau, we will need to define concordant and discordant pairs of data points.
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Figure 22 shows a sample data set, with concordant and discordant pairs of points in the data. Concordant
pairs are pairs of data points were an increase in X values also shows an increase in Y values. Discordant
pairs are pairs of data points were an increase in Y values shows a decrease in Y values. For a dataset with
n points, there are n - (n — 1) /2 possible pairs of points.
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v

Figure 22: Concordant and discordant pairs of data points in an example data set. Concordant pairs are marked by a solid-like.
Discordant pairs are marked with a dashed line. Not all pairs in the data are marked.

Kendall's tau is a correlation coefficient using the concept of concordant and discordant pairs, in order to
assess the directionality and magnitude of the correlation between the sample values of Xand Y. Kendall's
tau is defined to be the difference between the number of concordant pairs and discordant pairs, out of
the total number of possible data point pairs:

#Concordant pairs — #Discordant pairs
n-n—1)/2

T (Xl:n' Yl:n) =

Similar to Pearson's and Spearman's correlation coefficients, T also obtains values in the range [—1,1].

We now return to our working example, and show the benefit of using these two robust measures of
correlation.
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Example 2.3A (continued) — Figure 23 shows the Pearson correlation coefficient, as well as the Spearman
correlation coefficient and Kendall's tau for the five data sets presented in Figure 20. This figure is the
equivalent of Figure21, with two additional measures of correlation added. We observe the relative
decrease in Pearson correlation to be substantially greater than the relative decrease in the other two
correlation coefficients, as the inserted noise in measurement increases. Next, we extend this example
and insert noise into several measurements.
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Figure 23: Pearson's, Spearman's, and Kendall's correlation coefficients as a function of the level of noise inserted to a single
outlier, computed for the five data sets described in Figure 20.
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Example 2.3A (continued — noise inserted at five measurements) — Figure 24 shows five data sets, similar
to the one presented in Figure 19 (the original data), but with noise inserted into the first five
measurements (as opposed to Figure 20 that showed noise inserted into a single measurement). In the
next page, we present the three different correlations computed for this data as a function of the level of
the noise added.
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Figure 24: Five datasets generated from inserting noise to five leftmost measurements in the data described in Figure 19.
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Figure 25 the three correlation coefficients as a function of the level of noise added. Again, the relative
decrease in Spearman's and Kendall's coefficients is smaller than the one observed in the Pearson
correlation coefficient as a function of the noise added. The effect observed in Figure 23 is even more
severe in this figure: Pearson's correlation coefficient may reach zero (no correlation) when only 10% of
the data are affected by the added noise. Next, we present a real data example comparing the three
different correlation coefficients.
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Figure 25: Pearson, Spearman and Kendall correlation for the five datasets displayed in Figure 24. Correlations are given as a
function of the noise added.
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Example 2.3B — Comparing correlation coefficients for data measured in two stations: Figure 26 shows
Turbidity measurements for a time span of two years, as measured in two neighboring water quality
analyzers in a water distribution network. Water flows from the first station, called "Source", to the
second station, called "Target." Data coordinates represent the hourly medians of turbidity
measurements at the two stations, for the same hour. No adjustment was made for the time required for
water to flow between the two network locations.

Data in Figure 26 is characterized by several "clusters" of points, with each cluster having a positive
correlation (slope). However, different clusters show different slopes. This grouping of observations may
be due to either a change in the water source, measured compartments of one (or both) sensors being
affected by dirt or residue, or periodic calibration of the sensors, leading to different "response curves"
to the actual turbidity values in the water. Nevertheless, within each cluster, we observe a strong positive
correlation. Looking at the data point cloud as a whole, it is difficult to assess if a correlation coefficient
computed over the entire dataset will be positive.

When computing the three correlation coefficients for the data in Figure 26, Pearson's coefficient has the
value of 0.044, Kendall's tau has a value of 0.157, and Spearman's coefficient has a value of 0.221. We
observe the two robust measures of correlation presented in subsection to have higher coefficients for
this data.
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Figure 26: Turbidity measurements for a time span of two years, across two neighboring stations. Water flows from the Source
station (X-axis) to the Target station (Y-axis). Data points represent hourly medians for the same hour at the two stations.

To conclude, in this subsection, we have shown Pearson's correlation coefficient to be highly sensitive to
outliers in the data. We presented two correlation coefficients based on the ordering of observations,
which proved robust to outliers or seasonal effects in the data.
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2.4 Bootstrap sampling and Bootstrap sampling for time-series.

The bootstrap is a statistical sampling procedure used to estimate the variance of possible error of an
estimation procedure. The idea behind the bootstrap is to imitate the variance in the original sample
caused by sampling, by generating 'possible datasets' that could have been observed, from the same data
generating process. In it's simplest form, the bootstrap creates a large number of possible datasets, e.g.,
100, each with size identical to the original data, by sampling observations without replacement from the
original data. The estimation procedure is run independently on the different bootstrap samples, and the
variance of the different "bootstrapped" estimates is computed, in order to estimate the variance of the
estimator for the original data. This principle is best demonstrated with an example.

Example 2.4A — Estimating the variance of the sample mean, when estimating the population means.

Consider an even 6-sided die. Each of the numbers 1-6 may be sampled with an equal probability of 1/6.

The population mean or the mean of an infinite number of dice throws, is HZJ;;% = 3.5. For this

example, we will assume the population mean is unknown, and we wish to estimate it using a sample
mean. The sample mean will provide a point estimate, a single number trying to estimate the population
mean of 3.5. Therefore, we will also be interested in assessing how accurate the sample mean is in this
estimation, or, what is the variance of the sample mean. Bias estimation will not be discussed in this
example.

For our example, we measure 10 independent dice throw results:
2346266441

For this data, the sample mean is 3.8. Since we are familiar with the generating process for this data, we
know the population mean to be 3.5. We are interested in estimating the variance of the sample mean
(as a procedure), when trying to estimate the population mean. In order to do that, we generate 100
"bootstrap datasets" from the original data. This is done by sampling 10 observations for each
generated dataset, with each measured result obtained by sampling one of the original data points with
equal probability. We obtained the following bootstrap samples:

Bootstrap sample1: 1621244434
Bootstrap sample 2: 2434346464
Bootstrap sample3: 6261636643
Bootstrap sample4: 4366326621

Bootstrap sample 100: 2621434262

Each of the 100 bootstrap samples could have been observed instead of the original data, with equal
probability. We note that the number 5 was not sampled in the original dataset. Therefore, none of the
bootstrap samples include the number 5.

We compute the sample means for the 100 bootstrap samples. Figure 27 shows the distribution of the
100 bootstrap samples.
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Figure 27: Distribution of bootstrap sample means for the bootstrap samples of Example 2.4A

The 0.05 and 0.95 percentiles of the distribution of samples means are 3.0 and 4.5, respectively. The
bootstrap procedure concludes that the range [3.0,4.5] is a 90% confidence interval for the population
mean. This is quite a large range: we would like the decrease our uncertaintanty in estimating the
population mean. However, we cannot do so by simply increasing the number of bootstrap samples. The
Bootstrap procedure simply imitates the variance in estimation when observing a sample of 10
observations from our data source. To produce tighter bounds on the population mean — our original
sample must include a larger amount of samples. We show that larger datasets produce shorter
confidence intervals in the following example.

Example 2.4B — Estimating the variance of the sample mean, when estimating the population mean.
(continued - with larger samples):

We consider a case where we observe 50 measurements from an even die. The observed sample is
23462664412253535635624123136334325551535454451355

The observed sample mean for the 50 observations is 3.7. We produce 100 bootstrap samples, 50
observations each:
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Bootstrap sample 1: 14256233265545351524546514455525551256542434534653
Bootstrap sample 2: 36354261135562425643522414322366331361535325544164
Bootstrap sample 3:33543116325445466555455554313551434115335561536533

Bootstrap sample 4:32331366555653533335345313546566345553243654622613

Bootstrap sample 100: 51132652311333546144665451511531434654622655352641

Figure 28 shows the distribution of sample means, for the 100 bootstrap samples. The 90% central values in the
distribution are found in the range [3.319,4.02], giving a shorter confidence interval than the one obtained in
Example 2.4A.
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Figure 28: Distribution of bootstrap sample means for the bootstrap samples of Example 2.4B
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The previous example demonstrated the bootstrap sampling procedure for data with independent
samples. However, measurements in water quality time-series data are not independent across time, as
shown in Section 2.1. We proceed to demonstrate a bootstrap sampling procedure for time series data.

When trying to estimate population parameters by bootstrap, one cannot sample individual observations.
However, different time periods, which are not overlapping or in high proximity in time, can be considered
as independent and be sampled with replacement from the data to form makeshift time-series imitating
the original data. For example — from a year with 52 weeks, sample a new 52-week year by sampling one
week after another from the original data. A drawback of this approach is that by stitching together weeks
which are not adjacent from the original data, the bootstrapped time series will be noncontinuous once
every seven days.

If the quantity of interest is local in time, e.g., estimate the distribution for the rate of change in the data,
estimates can be computed over many short terms windows in time and bootstrapped estimates by
computing samples estimates obtained from the different windows. We show a practical example for a
time-series bootstrap procedure making use of local estimates across windows.

Example 2.4C - a bootstrap procedure for estimating the distribution of hourly changes in conductivity,
and testing if the distribution of hourly changes in conductivity has changed across different years: The
data for our example is a time series of conductivity measurements, measured throughout the years 2018-
2019 at a sampling location located in an urban water distribution network. We split the dataset into two
periods — February to December 2018 and February to December 2019. We are interested in testing
whether the distribution of the hourly rate of change of conductivity differs between the two years: was
the hourly rate of change of conductivity larger or smaller in 2019 compared to 2018?

The month of January was excluded from the data due to a different operation scheme in January 2018.
Figure 29 on the next page, visualizes the data.
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Figure 29 shows histograms for the distributions of the maximum daily change across the two years. The

histograms were formed by computing the difference between the maximal and minimal daily
measurements for each calendrical day in the data.
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Figure 29: Histogram for the maximum change of conductivity measurements in a day across the two years in the data.

Our task is to find out if the differences between the two distributions can be explained by sampling
error alone (i.e., we were likely to see the same two graphs, with years for labels switched) or not. Our

approach will consist of sampling 2018-like and 2019-like bootstrap years of data, and comparing the
bootstrap samples generated from both years.
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From each of the two years, we sample 1000 bootstrap datasets (years), by sampling 11 months of 14-
day intervals from the data, with replacement (an interval may be sampled several times). Figure 30 shows
the Cumulative Distribution Function (CDF) for the two sets of bootstrap samples by year. Each graph
shows the 0.05, median, and 0.95 quantiles, for each value of "maximal daily change in conductivity". The
figure is interpreted as follows: each time we generate a bootstrap sample for a year, its CDF has a 90%
chance of passing between the two furthermost curves on each graph.

On the next page — we compare the two sets of bootstrap samples
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Figure 30: Cumulative distributions functions for the Maximal daily change in Conductivity, across 1000 time-series bootstrap
samples generated from the datasets shown in Figure 29. The three lines in each year represent the 0.05, median, and 0.95
quantiles, for the distribution of the daily range of Conductivity, across the bootstrap estimates.
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Figure 31 plots the two sets of bootstrap distributions, shown in Figure 30, together on the same graph.
We see a substantial overlap between the two sets of bootstrap samples. Therefore we conclude that all
differences in the distribution of the "maximal daily change in conductivity" between the two years may
be the result of sampling error alone.
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Figure 31: Comparison of the two CDF distributions of Figure 30. We see a large overlap between the two sets of bootstrap
samples, indicating all differences in "maximal daily change in conductivity" between the two years may be the result of
sampling error alone.

42



2.5 Prediction Models and model error distributions

Prediction models are used in statistics to associate changes in a dependent variable, usually denoted by
Y, with a dependent variable, usually denoted by X. Different statistical models have different pros and
cons — some of the models are very simplistic, and therefore allow higher interpretability of model
behavior, while others are more complex, at the price of reduced interpretability.

The Spatial Model methodology, presented in Unit B of this document, will make use of Prediction models
to predict water quality measurements at a target station, based on the equivalent water quality
measurements at a source station found upstream. The models presented in unit B will account for the
(varying) flow time between stations, along with adjustments that need to be made for specific water
quality data. Since Section 3.5 in unit B will focus on adapting existing prediction methodologies for use
in the Spatial Model framework, we found it best to include a subsection reviewing these prediction
methods.

In this chapter, we will review three models:

e The "Constant Shift" model — assuming measurement in Y is similar in distribution to the
measurements of X, with a shift in distribution values.

o The linear regression model — assuming a linear relation between X and Y.

o The kernel regression model — predicting Y given X by observing the behavior of Y for data points
with similar values of X.

For each model, we will provide the model equation, explain how prediction is calculated, and briefly
discuss the pros and cons for each model. At first, the models will be presented on a toy dataset, for better
clarity of model characteristics. Next, we will review 4 data examples taken from water quality analyzers,
placed at different locations in a water distribution network. For these examples, we will compare the
prediction given by the three different models, along with a graphical representation of the distribution
of prediction errors. Eventually, using the error distribution as a yardstick for abnormality of
measurements will allow us to detect irregular water quality events in Section 3.5 in Unit B.
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Example 2.5A - toy dataset for demonsrating different prediction models: Figure 32 shows the dataset
used to exemplify the three types of models mentioned before. The dataset consists of 2000 points.

On the next pages, we will look at the three different models fitted to this data.
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Figure 32: Toy dataset for demonstrating different prediction models.
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The constant shift model: Figure 33 shows the constant shift model fitted to this data. The model equation
is assumed to be:

Y=a+X,

i.e., the distribution of Y's is a shifted version of the distribution of the X's. Such models may be
appropriate for conductivity measurements between two measurement locations when there is no
attenuation of measurement values across the water distribution network. For measurements like Total
and Free CL, or turbidity, it is not reasonable to assume a slope of 1 between two measurement locations.
Moreover, sensors for these measurements must be calibrated on-site, leading to different
"response slopes" for the same values of T-CL, F-CL, and Turbidity in the water. The parameter a is fitted
in a robust manner, using

estimated a = median(Y — X),

i.e. taking the median value of Y — X across all data points. In the example below, we reach a = 0.121.
We see a very poor fit between the model given by the red line and the data.
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Figure 33: The "constant shift" model exemplified on the toy data example
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Figure 34 shows a linear regression model fitted to our example dataset. The linear regression model
equation is given by:

Y =a+ bX.

The parameters a and b are estimated by minimizing the sum of squared distances between points and
their predictions on the green line. In other words, out of all possible green lines that could be fitted to
the data, the green line presented in Figure 34 is the one where the sum of square vertical distances
between data points and their corresponding points one the line (for the same value of X), is the smallest.
The Fitted line for thisdataisY = —0.1065 + 1.4938X. Graphically, the model fits the data much better,
and we observe a slipe closer to 1.5 is more appropriate than 1. However, we can still see a slight non-
linearity in the data — for the highest and lowest values of X, the model usually predicts lower values than
expected.

There are several ways to extend the linear model to complex relations in data: some possible estimation
parameters may be robust to outliers, considering the absolute value of errors, instead of square errors;
other models may consider polynomial model equations such as Y = a + bX + cX?. To allow modeling
of complex relationships in data, the SM uses non-parametric kernel regression, explained on the next
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Figure 34: The linear regression model exemplified on the toy data example

46



A non-parametric model is a statistical model that cannot be put in a closed equation form, with a limited
number of parameters. For comparison, the last two models we reviewed were parametric, since their
model equation could be summarized by either one or two parameters. A kernel regression is a
nonparametric regression model, predicting a value for Y, the dependent variable, using the value X, and
a selected set of historical data points with X values similar to the one used for prediction.

Consider the setting where we are given observations (X;,Y;),i = 1, ..., N and want to predict Y’ for a
new observation with a given X = X'. We select some domain D(X"), a valid range over the X's, and
compute:

YN, I(X; € DX,
Z?:ll(xi € D(X,) '

Predictionof Y' =

where I(X; € D(X') is an indicator function receiving the value 1 if X; is in the domain selected around
X', and 0 otherwise. The numerator for the above expression sums overall Y's that are associated with Xs
in the domain around X'. The denominator counts how many observations are summed over in the
numerator. Therefore, the above expression is just a local average of Y's, for all point with X's in the
domain around X' (as defined by the domain D(X") ). Defining the domain D(X") is application and data
specific. For rich data sets, with complex signals, the domain D (X") might be very local in terms of X's. For
small datasets, D(X") might consider up to 20-30% of the data, at the cost of simplistic modeling.

The indicator function I(Xi € D(X’)) can also be replaced by a kernel function, K(X;, X"), receiving values
greater or equal to zero. The model equation then becomes:
i1 KXo, XOY;

?I=1 K(Xi' X’)

Predictionof Y' =

The idea is to replace the unweighted average over the domain including D(X") by a distance specific
weight function. Again, selecting the right kernel function for a model is data and domain-specific. Some
application may even require that the kernel function be non-homogenous in space, i.e., rely on the values
of X" and X; explicitly, and not just through their distance, |X; — X'|.

In the setting encountered by the Spatial Model, we are interested in constructing many models with
thousands of observations in each. Storing all tens of thousands of data points, for hundreds of models is
inefficient. Therefore, before model construction, we aggregate observations to bins by X coordinate, as
explained on the next page.
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SM Kernel regression, Step I: Kernel regression in the Spatial Model begins by binning observations to
bins, by X values, as exemplified in Figure 35. Different horizontal bins are represented by the white spaces
between gray vertical lines, with data points being divided across the different bins. For each bin, we
compute the median Y value for all observations in the bin. The median values of Y in each bin represented
by red lines in Figure 35.

Let ()?-,Y}-,Nj),j =1, ..., B represent the X value of the jth bin (by the center point falling in the pan of
the bin), the median value of Y's for observations in the bin, and the number of observations per bin, for
bins 1,...,B. In Figure 35, B is set to 60. Step Il, on the next page, step Il of the algorithm will aggregate
over bin medians to form predictions.
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Figure 35: Kernel regression, with binning over X's, step I. Bin median values are represented by red lines in each bin.
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SM Kernel regression, Step Il: The kernel regression model equation is given by the formula:

j=1 K, XY,

Predictionof Y' = —,

N; if X; is in the 5% bins closest to X'

where K(X;,X') = ~
(% x') {O, if X; isn't in the 5% bins closest to X'

This model equation predicts Y’ by taking a weighted average of the bin representative Y values, of the
5% of bins closest to X' . The number of bins, set to 60, and the threshold for proximity, set to 5%, are
model parameters to finetuned to the data at hand. Figure 36 shows model predictions for the data. The
model captures the data well, and predictions are not biased for extreme values of X, as in Figure 34.

Sections 2.5.1-2.5.4 provide interesting case studies comparing the three model types for real data. In
Figures 33-36, we maintain a color-coding where red curves are for Constant Shift models, green curves
are for linear regression, and blue lines are for kernel regression. This color-coding is kept throughout the
next subsections.
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Figure 36: Kernel regression, with binning over X's, step Il. Model predictions by weighted averaging of the 5% closest bins are
given by the blue curve.
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2.5.1 Example for good model fit, some outliers

In this example, we fit the Constant Shift, linear regression, and kernel regression models to a dataset
comparing Turbidity measurements at a source and target station, with water flowing between the two
stations. The data used for analysis is for a time span of 20 days, with one measurement every 10 minutes.
Datapoint coordinates in Figure 37 are the hourly median values in the two stations for the same
calendrical hour. Figure 37 shows the three models presented in this section, fitted to the data. For this
data, since data points are themselves hourly medians, no additional binning at the kernel regression level
was performed. We observe all three models to fit the data well, with a slope of 1 (in the constant shift
model) describing the ratio of turbidity measurements between the two stations. Some of the
measurements at X = 0.41 and X = 0.36 (marked by dashed ellipses) are outliers in Y values,
representing increased turbidity measurements at the target station. However, despite being outliers,
these points do not jeopardize model validity, as seen by the green line for the linear model. On the next
page, we discuss the error distributions for these three models.
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Figure 37: Three valid models for Turbidity at a source and target station.
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Figure 38 shows the (smoothed) error distribution for the three models presented in Figure 37. All three

models have error distributions in the range [—0.03,0.03] NTU, excluding some outliers. Of the three
models, The constant shift model fates slightly worse than the other two.
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Figure 38: Error distributions for the three models of Figure 37.
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2.5.2 Example for a non-linear relationship in the data

Figure 39 shows data for turbidity measurements over a timespan of 20 days, with a similar sampling
resolution and preprocessing as in Section 2.5.1. Again, the data points compare turbidity measurements
from a source and target location, with water flowing between the two locations. Unlike Figure 37, which
features a linear relationship between the two stations, Figure 39 shows a highly non-linear relation for
concurrent turbidity measurements between the two stations. The red line, showing the fitted "Constants
Shift model" misses the data almost entirely. The green line, showing the fitted linear regression model,
gives biased predictions for the low and high values of turbidity at the source station, as exemplified in
the toy example of Figure 34. Only the kernel regression can fit the data correctly. The error distributions
are compared and discussed on the next page.
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Figure 39: Three models for turbidity, with data showing a non-linear relation between source and target stations.
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Figure 40 shows the error distributions for the three models. The majority of the mass for the error of the
kernel regression model is found in the [—0.03,0.03] range. Other models exhibit wider distributions

(larger prediction errors), which are also highly skewed, with a right tail. Only the kernel regression model
provides an adequate fit to the data.
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Figure 40: Error distributions for the three models of Figure 39.
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2.5.3 Examples for bad model fit, when using data gathered over a long period

We examine Free CL measurements data collected over 604 days, at 10 minutes intervals, for two stations
called Source and Target. In this setting, water flows from the source station to the Target station. Point
Coordinates in Figure 41 represent hourly medians of measurements for the same hour at both stations.
The data presented in Figure 41 does not show a clear correlation pattern between the two stations.
Attempts to fit the three previously discussed models to the data lead to significantly different results.
The constant shift model, forced to use a slope of "1" passes through the center of the data point cloud;
however, there is little evidence in the data to suggest a positive correlation between measurements
gathered at the two sites. The linear regression and kernel regression methods show a slight negative
correlation between the two sites: this is not a likely result, given the layout of the water distribution
network. We proceed to examine the error distributions of the different distributions on the next page.
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Figure 41: Comparing prediction models for Free CL measurements at a source and target station, over 604 days.
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Figure 42 shows the error distributions for the three models. All three models have the majority of
prediction errors in the range [—0.2,0.2] mg/L. Using Figure 42, one may erroneously conclude that all
three models perform "equally well", when in fact the three models perform "equally worse": a span of
0.4 mg/L encompasses almost the entire range of valid measurements on the Y axis of Figure 41, meaning
the models presented in both figures perform no better than a "guess" of the Y value.

The prediction model using a large time period for training rely on data collected with differing source
water quality, sensor calibrations, and seasonal effects. Simplistic models, such as predicting the target
site water quality measurement value by the corresponding source site value, cannot account for these
effects without additional effort in modeling. While one may seek to extend the simplistic models
presented in this chapter to account for additional variables, we prefer instead to rely on models trained
on datasets with a shorter time period, and fewer covariates. These models are easier to analyze and
diagnose. The next subsection will review these two sites again, with models trained using 60 days of data

alone.
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Figure 42: Error distributions for the three models of Figure 41.
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2.5.4 An example resolving the issue raised in 2.5.3

Figure 43 shows Free-CL measurements for a period of 60 days, for the two stations described in Section
2.5.3. We observe a clear positive association in the data captured by all three models. The linear and
kernel regression models relatively agree on the predicted Y values, across the range of possible X values.
On the other hand, the 'Constant Shift' forced to use a slope of 1 model does not fit the data well: chlorine
dissipation is linear, when comparing the two stations, but not with a 1:1 ratio. Figure 44 on the next page
shows the 'Constant Shift' model to have biased predictions, with an error distribution that is not centered
around 0.

The problem presented in Section 2.5.3 has been partially solved by reducing the time period of data
available for model training. In Unit's B and C we will show better prediction results can be achieved with
training datasets spanning 14-30 days.
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Figure 43: Free CL measurements and models for the two stations described in Section 2.5.4, over a period of 60 days.
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Figure 44: Error distributions for the three models of Figure 43.
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2.6 Quiz for Unit A
1. Whatis the ACF?

2. Why should measurements be binned when analyzing time series? When is binning mandatory?

3. Consider a water measurement time series with no binning of measurements. If the sampling
resolution were to increase, how would the following values change:
a. ACF(shift=0)
b. ACF(shift = 1 single measurement)
c.  ACF(shift = a number of measurement equivalent to 1 hour)

4. Whatis the CCF?

5. Why is the shift argument value for which the CCF receives it's maximum interesting? How can
this value be interpreted?

6. What possible types of noise are observed in water quality data, and how are they handled?
Name three types of noise in the data, and way to counter them.

7. Except Pearson's correlation coefficient, we learned two other correlation measures. How are
these correlation measures called? Why are these measures preferred for some data types?

8. Compute Kendall's Tau for the following sample of data points:

{(111)I (ZIZ)I (3I4)I (4I5)I (5I3)}
9. Can the bootstrap sample 1,2,4,0,5 be obtained from the original data: 1,2,3,4,5?

10. Our water utility engineer, named Ahab, computed an ACF for a timeseries of conductivity
measurements. The time series was measured for 1 Year, in a 10 minute resolution, at some
location. Aaron would like to estimate the sampling error for the values of the ACF. In order to
do so, he plans to sample 52560 measurements (the equivalent of 1 year) from his original data
series. Aaron has the following claim: "l can estimate the sampling error of my ACF, across all
possible shifts, using the bootstrap samples produced in this method!". Jezebel, also working at
the water utility: "You cannot use the bootstrap technique to estimate the value of the ACF at
any possible shift!".ls Ahab correct? Is Jezebel Correct?

11. What types of prediction models were discussed? What are their Pros and Cons?

12. What is the prediction model's error distribution used for?
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3. Unit B —Algorithmic and Statistical Methodology in the Spatial
Model.

Unit B discuss the statistical methodology for the Spatial Model. Section 3.1 provides an introduction to
the SM methodology, and motivates the construction of Statistical models involving two or more water
network locations. Sections 3.2-3.5 discuss pair models in depth, with the different subsections focusing
on flow time estimation, selection of flow regimes, error estimation for flow time estimations and
predictions for of water quality measurements, respectively. Sections 3.6-3.7 discuss models for triplets
of stations. Section 3.8 recaps up on the complete methodology.

3.1 Introduction to the Spatial Model.

This subsection motivates the use of flow time estimators, construction of statistical models for the
relation in water quality measurements between pairs of stations, and introduces the idea of models for
triplets of stations.

Water quality sensors in a water distribution network are generally found in key location in the network,
with flowing between network locations, and several types of measurements gathered at each network
locations. An illustration of such a water distribution network is shown in Figure 45.
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Figure 45: An illustration of water quality analyzers located across a city. The city has 5 measurement locations named A-E, with
time series for conductivity and turbidity measurements depicted above each measurement station. Blue arrows depict the general
direction of water flow between the different stations. The purpose of the Spatial Model is to model the relation between water
quality measurements from the same type, across the different stations.
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The construction of spatial models being with modeling the relationship between the measured time
series in two connected network nodes, as shown in Figure 46. By modeling the different pairs of sensors
in the network, we aim to provide good coverage for water quality events.
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Figure 46:Spatial Model pair model focus on modeling one pair of measurement locations, with the same measurement type at a
time. In this figure, we illustrate this concept by focusing on a specific pair of connected stations (or link), out of the different links
presented in Figure 48.

Our working example for this section, depicted in Figure 47, shows conductivity measurements for 16723
hours, measured in two network locations. The two locations are connected, and water flows from the
source station (time series shown in black) to the target station (time series shown in red). The two
stations show substantial variability in terms of conductivity measurements, with measurements varying
between 350 to 800 uS/cm. While each station shows substantial variability, the two stations closely
resemble one another, with the 'red' curve following in motion after the 'black curve'. Consider a water
engineer monitoring the Conductivity measurements for the target station. Looking at the 'red' curve
alone, the engineer might be 'surprised' if a the 'red' curve is susceptible to abrupt changes. However, if
the black curve is known, changes in the 'red' curve can be foreseen, and the water engineer knows
changes in the red curve are not due to a water quality event happening in the network between the two
stations
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Figure 47: Conductivity measurements across 16723 hours *697 days), in two measurement locations — a source station (black)
and a target station (red). Water flows from the source station to the target station.

Figure 48 shows the CCF for the two series depicted in Figure 47. The CCF shows a distinct peak at a lag of
three hours, hinting the flow time between stations. For the purpose of this example, we consider the
flow time between the two stations to be three hours and the flow time to be constant across all times.
Next, we show how the flow time estimates can be used to improve predictions of water quality
measurements at the target node.
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Figure 48:The CCF for the two conductivity time series presented in Figure 47. The CCF shows a distinct maximum at LAG = 3 Hours.
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Figure 49 shows two scatter plots. The first scatter plots, on the left, show the bi-variate distribution of
conductivity measurements taken at the two stations at the same time. The second plot, on the right,
shows the bi-variate distribution of conductivity measurements taken with a time gap of three hours
between source and target stations, i.e., a pair of points (X,Y) is taken with X being the measurement
station at time T, and Y being the measurement at the target station at time T + 3 hours. The graph on the
right, accounting for the flow-time between stations, shows a substantially better correlation between
the two stations. Table 3, below Figure 49, shows the sample correlations in the two graphs, using our
three measures of correlation, discussed in Section 2.3. We can see that correlations that account for the
flow time between network locations (based on the subfigure on the right of Figure 49) are higher than
"raw" correlations (based on the subfigure on the left of Figure 49).
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Figure 49: Plotting the hourly median conductivity measurements for the two time-series presented in Figure 45. Points on the left
plot show the hourly median measurements, for the same hour at both stations, while the right plot shows hourly median
measurements with a lag time of three hours: for example, a point whose X coordinate is the median conductivity value measured
between 07:00-08:00 AM at the source station, (at some specific day), had a Y coordinate corresponding to the hourly median
conductivity at target station, for 10:00-11:00 AM at the same day.

Table 3: Correlation statistics, for the two subfigures presented in Figure 47

No lag adjustment With lag adjustment, lag = 3 Hours
Pearson 0.953 0.961
Spearman 0.948 0.957
Kendall's 0.870 0.886
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This example motivates the following methodology:

o Define the list of pairs in the network which exhibit meaningful correlations.

e Find flow time estimates for each pair defined. Flow time estimates should be allowed to vary
across time of the day and days of the week (unlike in the above example).

e For each pair in the network, model the relationship in measurements between source and target
stations

e While monitoring the network, continuously predict the measurement for the target node
measurements in each pair based on the source station measurements. If measurements deviate
from their predictions for a substantial amount of time, provide a notification.

The next chapters will flesh out this high-level methodology, and provide examples and case studies for
its application.

The Spatial Model also features triplets: higher-level models that aggregate over the deviations
observed in two sensor pairs. Figure 50 depicts the different kinds of triplets that can be constructed using
pairs, with arrows depicting the direction of water flow. Model for triplets of sensors are discussed in
subsections 3.6-3.7.

Line A 3 Fork 3 2

Reversed Fork

3

VAY

Figure 50: Three possible types of sensor triplets that can be found in a water distribution network. Arrow directions depict the
flow direction of the water.
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3.2 Pair model — definitions and flow time estimation

This section describes the methodology for estimation of flow times between two network locations, the
notion of flow regimes, and how flow time estimates are obtained for several flow regimes.

We start by providing a simple estimator for flow time, when flow time is fixed across all dates and times.
We assume the underlying signal for water quality measurements is a continuous function in time. Values
for the source station are given by y(l)(t) , and values for the target station are given by y(z)(t), with
0<t<T. We assume that the measurements in source and target station are associated via the
following relationship:

yP ) =y (f(©),

meaning measurements appearing at time t at the source station appear at a later time, f (t), at the target
station. The actual values of y((¢t) and y®@(t) are not observed directly. Instead, the observed
guantities are averages of the above time series across time. Our discretization for the time domain is

such that quantities are observed at equally space pointsintime, t = A,2A,3A ...,T — A, T. The observed

®n @

measurements are indexed via i, are will be referred to as y; 7, y;*", with i receiving values in the range

i

1,2, ...~
A
The relationship between y™, y@ to yi(l),yi(z) is given by:

w1 o)
y; o= 2 yPwdu+ g,
A(i-1)

1 A
ﬁ”=—f YD @du + &2,
AJpgi-1
with £i(1), ei(z) describing random measurement noise.
The parameter of interestis § = f(t) — t, describing the flow time between the two stations.

3.2.1 Estimating §

Let y((;g:(b),y((g:(b) denote the subvectors from time index a to time index b for the two series.

We will construct a score function estimating how well does a candidate lag time, e.g. u time units, do in

explaining the association between y-(l) and y-(z)

; ., i.e., how reasonable it is for the actual lag time to be a
value of u. Our idea for the score function is the following. We will take two windows of measurements,
each of which is w measurements in size, and their centers u measurements apart. We will slide the pair
of windows across the data, and for each pair of locations, will compute a correlation score, e.g. the
Pearson correlation coefficient. The score function for the candidate lag time u will be the sum of Pearson
coefficients in all window pairs. Figure 51 depicts the pair of windows, w measurements in size, and u

measurements apart, positioned over the two time-series.
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Figure 51: Two times series of measurements, the blue series is the source stations, and the red series is the target stations. In
order to compute the rhoCCF function for a shift u: A) Two windows of measurements, w measurements in size and u
measurements apart are "slid" across the data, B) for each location point, the correlation between two subseries is computed C)
correlation subseries are aggregated.

Our score function is therefore defined to be:
N-w/2

1
— ~ (1) (2)
pCCF (u) = N z p (y(i—w/Z):(i+w/2)'y(i—w/2+u):(i+w/2+u))’
i=5+1,
and pair of windows exists

Where yEilzw/Z):(Hw/Z) represents the w-long subseries of measurements in the first time series, from
)]

(i-w/2+uw):(i+w/2+u)
second time series, from index i — % +utoi+ % +u.

. . w . w . .
index i — S toi + PY and y represents the w-long subseries of measurements in the

If we draw the function pCCF as a function of u (Figure 52), we hope to find a maximum in the function.
The X coordinate for the maximum will give the flow-time that best explains the shift in the two time-
series:
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Figure 52: Visualization of the score function
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We recall that the units of u are given in time measurements, therefore our approximated lag, &, is found
by multiplying the X-coordinate for the maximum by the resolution constant:

5 = A -argmax pCCF (u).
u
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We note that since correlations are valued between —1 and 1, an outlier measurement can damage
only w windows it participates in. Therefore, its damage is bounded.

The above method works well when flow-time is approximately constant across all time of day. Generally,
there is reason to believe this is not the case: flow times change across days and times of the day. We
therefore suggest a semi-automatic method: the user selects a partition for days of the week and times
of the day, so that the flow time in each part of the partition is approximately constant. Then, flow times
are approximated in each flow regime. For example, Figure 53 shows such a partition for Figure 51, with
orange and blue backgrounds, dividing days to a day flow-regime and a night flow-regime.
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Figure 53: A partitioning of Figure HHH to different flow regimes. Flow regimes are depicted by background color. In this Figure
the partitioning is to day and night regimes.

Once such a partitioning is defined, flow times are approximated in each flow regime by summing only
over the window pairs that below to the flow regime. Regime identity is defined by the center of the
window of measurements for the target station. Figure 54 shows an illustration of three score functions,
for three regimes, with each score function receiving its maximum at a different X point.

Regime 1 Regime 2 Regime 3
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Figure 54: Visual representation for the Spatial Model score function.

Mathematically, the estimated delay time for regime h, denoted by &, is given by:
8 = A - argmax pCCFy (w),
u

Where pCCFy, is a version of pCCF that sums correlation scores only over window pairs belonging to
regime h.
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Constructing a partition of the days of the week and times of the day so that flow times can be estimated
is a network-dependent and site-dependent task, and is the subject discussed in Section 3.3.

In terms of the correlation function used, we've found that the cross-covariance function, over ranks of
observations, works best in most cases. The value of w is usually taken to be the number of measurements
corresponding to 60-90 minutes (with 90 minutes taken for more noisy sensors). For low energy sensors,
the measure only once every 15 minutes, we take the w to be the number of measurements that
corresponds to 120-150 minutes.

In terms of measurements that should be used: We've found the conductivity is the most reliable in terms
of flow time estimation, followed by redox, and then pH. Turbidity and Free CL measurements are
generally not reliable for flow time estimation.

The remainder of this section discuss real life examples of score function charts, and how they can be
viewed and analyzed.

3.2.2 Real data examples for score functions

Figures 55 and 56 show two examples for regime score functions by regimes, for two spatial model pairs
based on Conductivity measurements. We observe see that the maxima in each figure, across the
different flow regimes, is obtained at different X-locations, corresponding to different estimated flow
times. Figure 55 and 56 show very distinct peaks for many of the different flow regimes (except Friday
evening and Saturday morning, which have relatively limited water flows), and are given here as a
yardstick for score functions of a model fitted correctly to the data.
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Figure 55: An example for flow regime score functions, for a Spatial Model pair connecting two stations in the same pressure
zone. Flow time estimation is based on Conductivity measurements.
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Figure 56: A second example for flow regime score functions, for a Spatial Model pair connecting two stations in the same
pressure zone. Flow time estimation is based on Conductivity measurements.

Figures 57 and 58 show the score functions for the links depicted in Figure 55 and 56, respectively, with
score function for several measurements depicted together. Score functions were normalized so that the
maximum score value in each function is normalized to 1. In Figure 57, we observe Conductivity and Redox
measurements to give similar flow time estimates; the maxima across different subplots is found in the
same X location for Conductivity and Redox measurements. Generally, Conductivity gives the most distinct
peaks in the data. Score functions computed based on Free Chlorine are the most noisy, and are found in
the least agreement with other functions. In Figure 58, Conductivity and pH also relatively agree in
estimated flow times.

Additional examples for score functions, and comparisons between score functions obtained using
different measurements are found in Appendix A.1.
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Figure 57: Score functions for Conductivity, Redox, pH and Free Chlorine measurements, for the pair model presented in Figure
55. Score functions were normalized to have a joint maximum value of 1.
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Figure 58: Score functions for Conductivity, pH and Free Chlorine measurements, for the pair model presented in Figure 56. Score
functions were normalized to have a joint maximum value of 1.
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3.3 Selecting flow regimes

In Section 3.2, we reviewed the SM methodology for flow time estimation, given a fixed partition of
measurement times into different flow regimes. We presented a methodology that allows the user to
estimate a representative flow time for each flow regime. This section discusses how flow regimes are
selected.

In order to find a suitable partition of the dates and times to flow regimes, we use an additional flow
meter measurement found inside the network, ideally in a central location, or in the entrance to the
network. The major assumption is the times of low and high flow identified using the flow meter are
similar to the times of low and high flow in the modeled link.

As a motivating example, we view Figure 59, showing the median, 10% percentile and 90% percentile of
hourly flow, in a major water distribution network in Israel. The figure shows the distribution of flow time,
conditioned on the time of the day, day of the week, and season of the year. We notice the values of flow
may substantially vary, from values of 1000 m3/h and up to 5500 m3/h. However, when looking at the
distribution of flow for a specific type of day and time of the day, the variance in hourly flow values is
substantially lower. This motivates us to "breakdown" the time of the day, and hour of the week, to
different regimes based on different partitions, so that the distribution of flow with-in each flow-regime
is with a smaller span of values.

We continue after Figure 59 with our working example for this section.
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Figure 59: Motivating example - Median, 10% and 90% percentiles for flow, in a flow meter located in a water distribution
network, for different hour of the day, days of the week and Seasons of the Year. The flow meter is located in Israel, and Seasons
are defined by the daylight saving time. Day 1 is Sunday.
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The data for our working example for this section is shown on Figure 60. Figure 60 shows the distribution
of hourly flow time, by the different hours of the day. The summary statistics plotted are the median
hourly flow, the 10% percentile and the 90% percentile. Different times of the year and days of the week
are disregarded in this graph.

Next, we view the distribution of flow time by the hour of the day and the day of the week, on Figure 61.
The plot shows the variance of flow times for each hour of the day is substantially reduced, compared to
the variance of hourly flows (within each hour) on Figure 60. This can be seen by the range between the
two gray lines in each hour.

We continue partitioning our data by the seasons of the year. Figure 62 shows the distribution of hourly
flow times by the hour of the day, day of the week and season of the year. The season is the year is defined
by the use of daylight-saving time in the location of the flow meter. We notice there are significant
differences in the distribution of flow times between the two seasons. We also notice the gap between
gray lines, marking the 10% and 90% percentiles of hourly flow values, is substantially smaller than the
gap we originally started with on Figure 60. Our discussion of the working example continues after Figure
62.
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Figure 60: Working Example -Median, 10% and 90% percentiles for flow, in a flow meter located in a water distribution network,
for different hour of the day.
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Figure 61: Working Example (continued) -Median, 10% and 90% percentiles for flow, in a flow meter located in a water
distribution network, for different hour of the day and days of the week. Day 1 is Sunday.
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Figure 62: Working Example (continued) -Median, 10% and 90% percentiles for flow, in a flow meter located in a water
distribution network, for different hour of the day and days of the week and seasons of the year. The flow meter is located in
Israel, and Seasons are defined by the daylight saving time. Day 1 is Sunday.

Next, we can define flow regimes by observing adjacent times and dates which have similar flow values.
For example, we can define "Summer-midweek-day" to be the flow regime with summer days , which are
also Sunday-Thursday, and hours 8AM to 23PM. Similarly, "Winter-midweek-day" may be defined for
Winter days. "Summer-midweek-night" and "Winter-midweek-night" may be defined for the remaining
hours of the day. For Friday and Saturday, different regimes could be defined based on the hourly flow
values.
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For this example, partitioning measurement times by three variables (time of the day, day of the week
and season of the year) was sufficient in order to achieve well defined flow regimes (small variation of
flow with-in each regime). Figure 62 shows substantially lower values of conditional variance compared
to Figure 60. However, this may not always be the case: it could be that partitioning measurement times
by the above three variables may not lead to lower conditional variances of hourly flows. For these cases
we suggest the following guidelines:

Draws figures such as 59-62 for your flow data. See if the variation in hourly flow values decreases
as more variables are added into the analysis.

Variables which are not helpful, i.e., do not decrease the variation in flow time, should generally
be disregarded when selecting the flow regimes.

Find additional variables that may be indicative of the flow in the network. This includes
operational variables such as the states of pumps, levers and the source of water used (if more
than one source is available). As an example, see the definition of network regimes at the start of
unit C, and Sections 4.2.2-4.2.3.

For the above water distribution network, positioned in Israel, Friday and Saturday were known
a-priori to be substantially different from the other days of the week. If you know of a different
time of the day, or day of the week, that behaves substantially different from other times, use an
indicator variable to identify these times.

An important point to note, is that as more flow regimes are defined for the data, less data points are
available in each regime, thus making flow time estimation harder. We generally suggest at least one
month of data in each flow regime, in order to have good estimation of flow times, along with the ability
to use the estimation of the sampling error as detailed in the next section.
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3.4 Estimating the sampling error in flow-time estimation

When analyzing flow-time estimates using the Spatial Model, we are also interested in estimates for the
sampling error of estimators, i.e., if data was sampled from a slighlty different time period, how would
the flow-time estimates change. We utilize a resampling procedure in order to generate our error
estimate.

Step |- generating several "folds" of the data: We partition the different weeks of the time line into
several groups, e.g. 7, in a cyclical manner. Let Ny, 4¢itions denote the number of week groups. Figure 63
shows such a partition of the time line. We than compute our flow time estimators Npqritions times, by
each time removing one of the week groups from the data. At the end of this step, each flow regime has

Npartitions €stimated flow times, each computed with — of the data removed.
partitions

[Week 1| Week 2 Week 3| Week 4] Week 5 [ Week 6 | Week 7| Week 8 | Week 9 |Week 10/Week 11|week 12/Week 13|
»

>

Group 1 Group 2 Group 3 Group 5 Group 1 Group 2 Group 3 Group 5

Figure 63: A visualization of a timeline with a parititon of weeks into 7 different subgroups.

Step lI- compute error estimates: for each of the flow regimes, we compute the InterQuantile Range (IQR)
for the Ny titions flow estimates. The IQR is defined to be the distance between the 3" quartile and the
1°t quartile. Our error estimate is half the IQR: it is the distance from the center of the distribution of flow
time estimates in which you find the central 50% of estimates.

The above resampling scheme uses a time period of a week as its basic block. This scheme was chosen so
that autocorrelation of water quality time series is taken into consideration as discussed in Section 2.4.

We note that by using too few folds, flow time estimates will become too noisy compared to the original
estimates. By using too many folds, the flow time estimates in each fold will be effectively computed using
the same data using for the original estimate, and therefore will be non-informative. We suggest to set
Npartitions by seeking to estimate "how much will flow-time estimates vary if another 1/N,,4.¢ition Of
the data were sampled?".

Figure 64 show the score functions for 7 different data-folds, for the data and score functions depicted in
Figure 56. Each of the 7 different curves, depicts a score function computed after removing 1/7 of the
data. Vertical lines represent the estimated flow times, for each fold of the data, for each flow regime.
Different flow-time estimates obtained for the different folds in each flow regime are found in relatively
good agreement.

Additional graphs showing score function for cross-validation estimates of flow times are found in
appendix A.2.
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Figure 64: Score functions for 7 data folds, for the data and score functions depicted in Figure 56, for an SM model estimating
flow time between two network locations using conductivity measurements. Different colors represent score functions with
different week groups removed. Vertical lines mark the flow-times with maximal score values in each fold of the data.
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3.5 Pair Model — Prediction and Monitoring

This section discusses how prediction models are built for SM pair objects, and how prediction models are
used for monitoring. Construcion of prediciton models is discussed in Section 3.5.1, and monitoring is
discussed in 3.5.2.

3.5.1 Construction of prediction models
The first step in construction of prediction models is the construction of a training set according to the
following steps

Step I: for a preset period of time, e.g. most recent 30 days prior to model construction, collect all the
times for which the target node has measurements. We denote times in which target station
measurements were available by t4, t,, ..., ty.

Let S(t) be the estimated flow time, for water arriving to the target station at time t. For example, water
arriving at time t; at the target station passed the source station at time t; — 6(t;). Let y(l)(t) and
y(z)(t) represent water quality measurements at the source and target station, respectively.

Step Il: create a dataset with the entries:
(y(l) (t1 - S(tl)) ,y@ (tl))

(y(l) (tz - S(tz)) ,y@ (tz))

(v (e = 8Ce)) ¥ @)

The values of y(t) and y@ (t) are given by median time bin values, as explained in Sections 2.1-2.2. If
a source value y(l) (ti — S(ti)) is not available, (either due to missing data, fixed data, or data out of

value limits) then the ith point is removed from the data.

The values of the form y(l) (ti — S(ti)), fori =1,...,N, will be known as the flow-time adjusted source

values.
We proceed with model construction.

Step lll: construct kernel regression models for the training set, using a kernel regression (Section 2.5),
with a predefined number of bins and kernel size.

Step IV: for each data point, computed its predicted value, 37(2) (t), fori=1,..,N. Compute also the
residuals:

ei=yPt) - 9P, i=1,..,N
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The residuals will be used for monitoring and event detection in Section 3.5.2.

The above model is a prediction model for all flow regimes, with the variation in flow-time only taken into
consideration when selecting the X-coordinate values for the training set. Empirically, we have found
constructing different prediction models for each flow-regime leads to lower prediction accuracy,
especially in flow-regimes which span relatively short time span, e.g. weekend regimes.

Figure 65 shows three graphs that are used in the diagnostic analysis of SM pair object prediction models.
The three graphs, from left to right, are: A source by target graph, showing the values ofy(l) (tl- - S(ti))

in the source station against the values of y(z) (t;) in the target stations, for different times (by values
of t;; A histogram of prediction errors; A scatter plot of prediction values vs. actual values measured. The
three Graphs in Figure 65 are shown for a prediction model for conductivity measurements, and show a
model with good fit to the data. Additional examples that can be used as yardsticks, along with examples
for a bad model fit, are shown in Section 4.8.

Distribution of prediction errors
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Figure 65: Diagnostic graphs for a pair prediction model. Left: Comparison of Target measurements, flow time adjusted flow
measurements. Center: Histogram of prediction errors. Right: Scatterplot comparing Target station predicted measurements,
against their actual measured values.
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Figure 66 compares shows an Actual vs. Predicted graph for two models — the left model taken flow-time
into consideration. The model on the right uses §(t) = 0 in model estimation. A better fit is achieved
when considering flow times in model construction.
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Figure 66: Two "Actual vs. Predicted" scatter plots for a model predicting target station conductivity values based on source
conductivity values. The left plot show uses flow-time estimates in model construction. The right plot is for a model assuming the
flow-time is identically zero at all times.

3.5.2 Monitoring target station measurements using prediciton models.
We explain how SM pair objects prediction models can be used for detecting water quality events in the
target node stations. Our main idea is the following:

We continuously predict target node water quality measurements based on the source values. If
prediction errors are irregularly large for a prolonged period of time, we need to notify the operator.

Specifically, event detection happens using the following procedure:

Step I: From the empirical distribution of e;'s (prediction errors), remove the most recent 5% of errors.
Sort the distribution of errors from smallest to largest. Denote the sorted residuals by
(1), €(2), -+ €(0.95-N), assuming for simplicity 0.95 - N is an integer.

Step Il: Find aninterval [L, U] holding the 1 — & yer — @ypper central values in the distribution of errors
by computing: L = e(q,,,.,-095n) ;U = e((l—aupper)ossw)'
Step Ill: For a size M defined by the user as the minimum size for half the prediction interval, set:
L < min(L, —M)
U « max (U, M)
By default, M is set to be 5% of the user limits for the variable.
Step IV: Compute in addition a set of "soft limits", by computing:
L'«L-M
U <U+M
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Where M’ is set to be 5% of the range between statistical limits for the variable.
Step V: Form a prediction interval using [§® (t) — L', 7@ (t) + U']
Step VI: Check if y@(¢) is found outside the range [§ @ (t) — L', 9@ (¢) + U'].

The system performs steps IlI-VI continuously. If y(z) (t) is found irregular using step VI for period larger
than a set delay time, e.g., 30 minutes, than a Spatial Model limits violation alarm is raised.

The filtration of the 10% most recent prediction errors is performed so that a water quality event will not
"contaminate" the distribution of prediction errors used to declare an event. See Section 4.8.9 for an
example demonstrating the importance of this filtration.

The next example illustrates why the requirement that the length of prediction intervals is no more than
a minimal size is needed. Figure 67 shows the distribution of prediction intervals sizes (U — L), for a model
predicting Free Chlorine in a target node based on a Free chlorine measurements in the source node, for
1 month of data (one observation taken every 10 minutes). The median prediction interval length is
around 0.1 mg/L. This indicates that for a vast proportion of times, a decrease in F-CL measurements that
is less than 0.05 in size compared to the predicted value, will result in the system declaring the drop in F-
CLas abnormal. However, we know that such a drop in F-CLis commonly experienced in water distribution
systems with a base line value of 0.4 mg/L F-CL (as is the case here). Hence, we require that the difference
in Spatial Model limits in no less than 10% of the user limits, and add an additional "grace period" using
the above soft limits (step IV in the above algorithm).
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Figure 67: Distribution of prediction interval lengths, for a model predicting Free Chlorine measurements in a target station
based on source values, when prediction interval length is not required to be of a minimum size. Measurements taken at 10
minutes intervals, across 1 month.
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3.6 Triplets — definitions and types of triplets

In this section, we motivate the use of statistical models combining water quality measurements from
three stations in order to detect water quality events. Figure 68 shows the different types of triplet models
that can be constructed in the Spatial Model:

Line A3 Fork 3 2

Reversed Fork

3

1 / 2

Figure 68: (Copy of Figure 50) Three possible types of sensor triplets that can be found in a water distribution network. Arrow
directions depict the flow direction of the water.

We provide several motivating examples, demonstrating cases in which triplet models may be more
sensitive to detect abnormalities in water quality events:

A water quality event starting after the first node in a Fork triplet — As an example, we consider
a setting where a water quality event with a relatively small footprint on water quality
measurements takes place at a fork triplet, with the origin of the event located immediately after
the source station (station number 1 in the fork triplet on Figure 68). The water quality event does
not affect station 1, but it is measured in stations 2 and 3. If the water quality event has little
effect on the gathered water quality measurements, it is possible the SM pair models alone will
not detect the event. Since Prediction errors in both stations 2 and 3 will be irregular and in the
same direction, we suggest constructing a model that monitors for water quality events in stations
2 and 3 simultaneously.

A case detecting calibration is needed in a line triplet— Consider a line triplet of Free- Chlorine
sensors showing the values 0.4 mg/L, 0.2 mg/L, and 0.4 mg/L, for stations 1,2, and 3, respectively.
These values hint that at least one of the stations 2 or 3 are not calibrated properly since Free-
Chlorine can only dissipate as water travels into the network. Constructing a triplet model can
detect irregularities in these values.
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We wish to motivate our detection method for sensor triplets. As an example of a fork triplet, we show
the hourly median pH measurements for three stations in Figure 69, across 2500 hours (over 100 days).
Station 1 (the source of the triplet) is shown in black. Station 2, the middle station, is shown in red. Station
3, the final station in the line triplet, is shown in blue. The three-time series are highly correlated. We
continue the example on the next page.
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Figure 69: Three pH time series, across 2500 hours, for three stations in a line triplet. pH measurements are hourly medians.
Stations 1,2 and 3 are shown in black, red, and blue, respectively.
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Figure 70 shows the bi-variate distribution of inter-station differences, with and without an adjustment
for flow time. The X axis in each scatterplot shows the difference in pH measurements between stations
1 and 2. The Y axis in each scatterplot shows the difference in pH measurements between stations 2 and
3. Each point represents a joint hourly measurements for the three stations. We observe the within-pair
deviations in values to be highly correlated across different times. If the joint value of both within-pair
deviations is abnormal, a human operator should be notified of the irregularity.
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Figure 70: Scatterplots for the differences in pH measurements, for each pair of sensors, for the line triplet shown in Figure
69.The left figure is shown without adjustment for flowtime, while the right figure adjusts for flow time using the method
presented in sections 3.2-3.3.

Flow time has to be accounted for when monitoring triplets. However, due to the differences in geometry
between the different triplet types, adjustments for flow-times vary. The remainder of this section
discusses which how flow times are encountered for. This will result in us monitoring a set of sensor
values measured at the three triplet stations at different times. Section 3.7 discuss how the sensor
measurements from the three network locations at different times are combined in order to detect
abnormal water quality events.

In section 3.2, we defined §(t) as the time it took water from station 1 to arrive to station 2 at time t:
Y@@ =y®(t-8s®).
Similarly, we can define §'(t) as the time it took water from station 1 at time t to reach station 2:
yO(t +6'(1) =y ().
The functions §(t) and 6'(t) are obviously related, however discussing the relation is beyond the scope
of this section. However, our suggested estimator in Section 3.2.1 is built for estimating §(t). In order to
estimate &'(t), we run the algorithm described in 3.2.1, but use the source station for the regime identity.
Since triplets involve two pairs of stations, we will use a subscript to denote the pair identity for delay
time functions: for example, §,_,3(t) and &',_3(t) will be used to denote the flow time for water arriving
from station 2 to station 3 at time t, and the flow time for water leaving station 2 at time t (and heading
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to station 3), respectively. Similarly, the notations 8,_,3(t) and §',3(t) will be used to denote the
estimators for the above delay times, respectively.

Table 4 shows the different time adjustments used when monitoring different triplet types. We now
survey this table in detail. The Fork-out triplet has two operation modes, meaning over-all 4 triplet flow
time adjustment methods are discussed. In the first three triplet types, a station monitored at time ¢
denotes a station monitored at the current time, i.e. the wall time, unless stated otherwise. For the
"source is pivot" mode of the fork-out triplet, time t denotes a past time.

Table 4: Monitored time points for different triplet types

Triplet type Stations setting time ‘ time at station 1 ’ time at station 2 ‘ time at station 3
Line 3 t —6,,5(t) — t—6,,3(t) t

81n (t _ 32_,3(t)) Wall time
Fork-in 3 t —81,3(t) t —6,,3(t) t

Wall time

Fork-out 2,3 t —615,(t), t t

t —81.,3(t) Wall time Wall time
Fork-out (Is Pivot) | 1 t (not wall time) t+8],(t) t+61_2(t)

For monitoring, we wish to follow the same "drop of water" across the network, as it passes different
locations at different times. For monitoring a line triplet (line 1 table 4), the last station appearing in the
water flow is station 3, which as monitored at the wall time, time t. Station 2 is the previous station in the
water flow. This station, is monitored at time t — 82ﬁ3(t), which is the estimated wall time, in which
water that left station 2 later arrived at station 3 at time t. Similarly, Station 1 is monitored at time t —

8y3(t) — 61, (t - 5243(0), which is the estimated wall time in which water the left station 1 later

arrived at station 2 at time t — §,_,3(t).

For a fork-in triplet (line 2 table 4), we monitor the target station t. The Estimated times in which water
leaving stations 2 and 3 arrived at station 3 are t — §;,3(t) and t — 8,_,3(t), respectively.

For a fork-out triplet, we wish to look at the same "drop of water " as it passes through the different
stations. However, we cannot monitor both stations 2 and 3 at the wall time, since the flow times in the
links 1 = 2 and 1 — 3 may differ. There are two possible solutions for this problem. The first possible
solution is to monitor the same "drop of water" both station 2 and 3, but with one of them not taken to
be the current wall time. We call this mode of operation "source is pivot" (line 4 table 4), since the source
station sets the "monitoring time" for the triplet. In this mode, a water drop passing station 1 at an earlier
time t is monitored by also observing times t + &;_,(t) , t + §;_3(t) at stations 2 and 3, respectively.
The monitor time t is advanced by the system to be the most recent time such that data is available for
both time t + &;_,,(t) in station 2, and time t + 8;_,5(t) in station 3.

A drawback of the "source is pivot" mode is that stations 2 and 3 are not both monitored at the current
wall time: one of the stations is monitored at a time which is earlier than the current wall time. The danger
in "source is pivot" mode, is that if a water quality event affects an end station which is not monitored at
the current wall time, the triplet model will only be able to detect the event at a later time. In order to
address this issue, fork-out triplets can also be monitored by observing both stations 2 and 3 at the
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current wall time (line 3 table 4). In this operation mode, the source station is monitored at two different
times, t — §;,,(t) and t — 6”1_,3(t), when computing the predictions for measurements at stations 2 and
3, respectively.

Our test statistic for detecting abnormal water quality events is discussed in the next section.
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3.7 Triplets — Data statistic used for monitoring

This section presents the test statistic used for monitoring events at the triplets level. In this section, the
setup is such that a single triplet is monitored for events, and the triplet type and operation mode is one
of the four modes/types listed on Table 4 in Section 3.6. The approach detailed below is general, and is
relevant to all four operation modes. Hence, it avoids mentioning the measurement times and lag times
(between triplet locations) directly. We will use the following notations:

y; and y, will denote the measured values for the target nodes in the two Pair models monitored
by the triplet.
V1 and ¥y, will denote the predicted values for the target nodes in the two Pair models monitored
by the triplet.
¥1,. and J; y will denote the lower and upper thresholds for prediction, respectively, for the target
node in the first pair of the triplet. Thresholds can be computed using any coverage probability,
but for this example let us assume a 95% coverage probability is used.
Similarly, let ¥, ;, and 9, ; will denote the lower and upper thresholds for prediction, respectively,
for the target node in the second pair of the triplet.
Let e; and e, denote the following normalized error terms:
yi— Y2 — 92
e, = 2 = — = )
max (Jou — V2,0 ,.2M)

= — — , e

max( Yiu — YL ZM)
where 2M is the minimal size for a prediction interval, as defined in Subsection 3.5 (using the user
limits).

Our test statistic for monitoring events is:

T =2 Ve e et @),

where y is a constant set by the user.

Some additional notes and comments:

The parameter y is added to the formula for T in order to "gain" from cases in which e; and e,
are correlated, see for example Figure 70.

The normalization done in the formulas for e; and e, is aimed at making T a unitless size, which
is 0(1) (see additional details on the distribution of T below).

A triplet model will declare a triplet alarm if the value of T exceeds a set threshold for more than
a defined time period.

We have found through numerous simulations that for fork-out triplets, a value of y in the range (2,4)
provides good adjustment for the correlation between e; and e,.

The threshold for declaring abnormal events is set by the 95% percentile of T statistics across the most
recent 30 day time period, excluding document water quality events.
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In terms of typical values for the distribution of T, we have found that when taking a sample of T values
with a buffer of 30 minutes or more between samples, the T statistic is typically gamma distributed. See
Figure 71 for a sample of T values, and Figure 72 for a comparison of the same data sample to a Gamma
distribution, with distribution parameters estimated using maximum likelihood estimators, using the R
package 'fitdistplus'. Appendix B shows additional examples for times series of T statistics, and their fits
to a Gamma distribution.
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Figure 71: Time series showing the distribution of T values for a forkout triplet, across 800 hours. Taken from triplet 441.
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Empirical and theoretical dens.
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Figure 72: Comparison between the data shown in Figure 71, to the best fitted gamma distribution. Subplots show a histogram
comparing the data to the maximume-likelihood fit, Q-Q plot, Empirical and theoretical CDFs and a P-P plot.
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3.8 Spatial Model — a recap on the full methodology.
Figure 73 shows a flow chart with the full SM methodology. See 4.8.1 for suggested parameter values.

Data-preprocessing: 1) Observations with values exceeding filtration thresholds are removed.

2) Fixed measurements over long time intervals are removed 3) Data is time- binned, use median value in bin

‘ Parameters: range for valid values, binning resolution, maximum time for constant value

Select Flow-regimes: Select flow regimes using the methodology presented in Subsection 3.3. Partition Days of
the week and times of the day by flow measurements, and also using knowledge of the water distribution
network.

; Parameters: selected flow regimes

Estimate Flow-times: Estimate flow times using the methodology presented in Subsection 3.2. Observe the score
function graphs for each flow regime, and the estimated sampling errors for the flow time estimates (as reviewed
in Subsection 3.4

Parameters: window size in minutes, flow time resolution, window-step size, Npartition,

Minimum and Maximum Flow time considered, learning period

Train prediction models (automatic): For each pair, construct a training set using target node measurement and
their flow-time adjusted source value, as described in Subsection 3.5. For each observation, compute its
predicted value. Pairs with measurements unreliable for flow-time estimation, use flow-times estimated for the

same network locations using different measuremen
‘ Parameters: Nr segments and kernel size for kernel regression, Time period used for

learning, should flowtime be copied from a different model

Estimate the distribution of prediction errors: Compute the prediction errors for the prediction in the previous
step. Remove the most recent 5% of prediction errors (chronologically). Store the sort list of residuals.

' Parameters: Remove 10% most recent errors (currently hardcoded)

Calibrate and fine-tune models: Check the diagnostic plots: Actual vs. Predicted Graph, Target vs. flow-time
adjusted Source values, distribution of errors. Change models if needed.

A4

Monitor target node measurements using pair prediction model (automatic): For each measurement in an SM
Pair targe node, compute it flow-time adjusted corresponding source value. Perform a prediction for the target
node measurement based on the flow-time adjusted source value. Compute Spatial Model limits as described in
Subsection 3.5. If the Actual measurements spatial model limits for an exceeded amount of time, raise an alarm
and notify operator. In addition, track for "poor prediction" and "poor SM limits" alarms.

Parameters: @wer, @ypper, Minimum size for prediction interval, Delay time,
‘ Parameters for soft limits

Construct objects for triplets: Construct line, fork-in and fork-out triplet models for the existing pair models.

' Parameters: Triplet type, a;, ay, ¥ (correlation coefficient.), IsPivot (relevant only for

ForkOut Triplets)

Monitor station triplets using triplet models (automatic): Continuously compute Triplet model T statistics for
each triplet, as discussed in 3.7. Estimate the distribution of T statistics using a Gamma distribution. If T values
are observed for longer than a fixed delay time, notify operator.

Parameters: 1 — a for setting threshold based on gamma distribution, delay time

Figure 73: A flowchart with the SM methodology. Parameters for each step are detailed in small, white on black text boxes.
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3.9 Quiz for Unit B

1) What types of object types are available in the Spatial Model?

2) Explain the importance of flow regime selection and flow time estimation. What are the dangers
of large errors in estimated flow times?

3) Explain the general idea for the algorithm used to estimate flow times from the data

4) How are flow regimes selected? mention several methodologies are auxiliary measurements
that can help in the selection of flow regimes.

5) What measurements are best used for the estimation of flow times? what can be done in SM
pair model that are not based on these measurements?

6) Whatis the sampling error for flow time estimators? how can it be estimated?

7) Sort the following terms, into their methodological order, as performed when constructing
prediction models:

- Collect and sort the distribution of errors, remove errors from the last portion of the data, e.g.
most recent 10% of the data.

- Create a prediction value for each pair of measurements.

- For each observed target measurement, find it's associated flow-time adjusted source value.

- For each observed target measurement, find it's relevant flow time.

8) Sort the following terms, into their methodological order, as performed when monitoring for
events in a target station:

- Ifalarm duration passes a prespecified delay time, notify operator.

- Compare the observed measurement to the prediction interval. If the measurement is outside
the prediction interval, start a "limits violation event".

- Adjust prediction interval to be at least the required minimum size.

- Use the historical distribution of errors to compute a prediction interval

- Use the lag-time adjusted source value for performing a prediction.

- Find the lag-time adjusted source value.

- Find lag time for current target station date time.

9) What is the danger of a model with poor prediction capabilities?

10) Explain in what scenarios may triplet sensors be useful.
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4. Unit C—The Spatial Model Software

This Section describes the Spatial Model module of the EDS. Screenshots in this section were taken from
a working Spatial Model system, and model names were changed to Station A, Station B, Station C and
so on, so that real locations are not identifiable.

System Objects and life cycle:

Pair models are defined using existing EDS models for network stations, and Triplet models are defined
using existing Pair models. A pair model can be in one of four possible states: Stopped, Running, Flow time
estimation and Performing prediction. Models that are in run state are evaluated once every minute. If
new records are available for the target node, predictions for target value are computed and compared
to the actual values measured. If the actual value measured exceeds the computed thresholds, an alarm
is raised. The SM module retrains the flow time for pair models once every 24 hours or when manually
requested. Note that a pair model may use another pair model as a reference for flow time estimation,
e.g. a Turbidity model may be unreliable for flow time estimation and may use the Conductivity based
model between the same two stations for flow time estimates. Model that have been stopped are not
evaluated.

Types of Alarms

The spatial model can raise one of the following alarms:

e Limits violation — A measurement is the target node of a pair has exceeded it's computed limits

.. . Range between Spatial limits
e Poor limit — The ratio g P

——————— for a pair is larger than 50%.
Range between Statistical limits

|Predicted target node value— Actual target node value|

e Poor prediction — The ratio

than 25%.
e No data- A pair object has no data available in either the Target or Source station.

for a pair is larger
Actual target node value P &

The above four alarms are associated with a pair model.
o Triplets alarms — A triplet's T value has exceeded it's computed threshold.

Multiple alarm types can identify a single event, since several of the above conditions can be met
simultaneously. However, the user will only be notified only of events including a "limits violation"
type alarm.
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Network States

In addition to the different flow-regimes defined at the pair level, the Spatial Model module supports
network-wide states. Currently, the following states are available for the monitored network:

State E: Water supplied from an external source
State R: Water supplied from reservoirs

State E—R: Network is transitioning from state E to R.
State R—E: Network is transitioning from state R to E.

The state machine and transition rules for these four states is fully discussed in Section 4.2. Pair models
may have a set time period where no alarms are raised after a Network State change, see Section 4.3.
Modes may be set to monitor and raise alarms in state E, R or both. For transitions states, no alarms are
raised.

4.1 Intro to the SM software and main software panels

This section describes the main screens and software panels of the SM software module. To gain access
to the SM screen, begin by logging in to the MindSet Detector EDS system. Figure 74 shows the log in
screen of the MindSet Detector. To log in:

- Select all station related to the SM, see the label "1" in Figure 74 (you also just select all stations)
- Select the option "Start spatial models server", see the label "2" in Figure 74.
- Click the "OK" icon, see the label "3" in Figure 74.

After log-in, you will see the main EDS screen, as in Figure 75.
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Click the
'OK/Accept"' button

MindSet Detector

Version  |Viersion 2.2.11.1

Username |hhclse.tUser

Password  [******* -

Please select model(s) from the list below or create new model
by selecting the 'Create new database icon' below

Show models from domain |

Station &
Station B
StationC
Station D
Station E

RIKRRIE

e Select EDS models related to

SM pairs and triplets

Log directory location  [c:\EDSLog\

SQL Server

|DESKTOP-SNMCJEL

¥ Start spatial models server GIF Terminate if other instances are running

[" Start domestic sensors server

= Set the SM model
e to start @ ﬁl

Figure 74: The EDS log-in screen. Steps to log in marked in labels
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Figure 75 shows the loaded EDS models and their current state. For each model the following key fields
are presented:

Model — gives the model name, used to identify the model in all screens

Description — a description of the model, in simple English

Status — current status. Model may be either running or stopped. Transition between states can
be done using the 'lever up'/'lever down' button at the bottom of the screen.

Model Time — Last data timestamp processed by the EDS model.

Last Run — Last time model was evaluated, in server time.

Details about additional fields, toolbars and EDS screens can be found in the EDS manual.

Click on the "Spatial Model window" icon, depicting a map (and showed in red in Figure 75) to access the
main Spatial Model window.

D Mindset Detector Server [User LevekEngineer] Version : 22.11.1 ] x
EDS Models |

Station B DESCZ | RUMHastory) | 2020/06/23 11:2708 NONE U057 UCI09 . MoData | 20204067271

Station C DESC3 | RUMHstory) | 2020/06/26 00:01:10 NONE UOTUCTEE . NeDlata | 202006/27 11:16:46 | ES
Station D ~ DESC4 | RUNHstory) | 2020/06/26 00:14:43 NONE U037 UC223 020406727 11:16:46 | DES
Station E DESCS  AUNHstory) | 2020/06/26 010500 NONE OS5 LC2 2020/06/27 11:16:58 | DES

~g80lL JJJJJJJJJJ. = ¢|G/ /¢

[Eror0|[ Wamings:1|[ Run:5 || Totak5 | Total Events Today:1 | Server Run/Import

Figure 75: The EDS models view
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Figure 76 shows the Spatial Model main window. The window features four views separated by tabs, filter
selection boxes, a tool bar and a status panel. The four views are:

Pairs tab- shows the list of pair models and their current state. The pairs tab is shows in Figure 76
Triplets tab- shows the list of triplet models and their current state. Triplets and their respective
tab are discussed in Section 4.9.

Panel tab — shows a " birds eye view" of all the models. The panel tab is shown in Figure 79.
Alarms tab- shows all alarms opened by the Spatial Model. The alarms tab is shown in Figures 81-
82.

Next, we survey the pairs tab, toolbar, filter selection boxes, status bar, Panel tab and alarms tab, in this

order.

Spatial Model View - o x

Pors | Trolets | Panel | Ams |

nA  Station®

StationB 2000626000110 |SU
Station®  2020/06/26 00:14:48

I Fitter By Cluster I Filter By Measurement IV Filter By Station A I Filter By Station B I Flter By Station C [V Update screen every 5 minutes

BEo0BL e e s

| Total Objects:24 | Learn:0 | Predict:508 | Pairs:24 | Triplets:0 | Wait for task | issing, See log file T 2020/06/27 11:21:59

~StationA ~l [ ~l [ ~ [ Show only models in RUN status.

Figure 76: The Spatial Model Pairs view

Pairs tab
The pairs tab shows a table with rows corresponding to different pairs model, and the following fields:

Id- A unique numeric identifier for the link

Cluster — A string describing the cluster the link is in. Clusters are groups of links identified by a
common name. Every link must be a member of a single cluster

Type- The type of SM model, "Pair" for all models in this view

Status — The current status of the model: stopped, running, estimating flow time or performing
prediction.

Reg — The network flow regimes in which the model is active, see Section 4.3.

Station A — The name of the source station for this link.

Station B — The name of the target station for this link.

Last record — The timestamp for the last record processed in the target node.

Units — The units of measurement

Measurement — The name of the monitored measurement.
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e Prediction Low/High Limit — The upper and lower thresholds computed for monitoring the target

station.

e Last Prediction — The last prediction given for the target node measurement for this link.
e Last Actual value — The value measured at the target station at the timestamp indicated by "Last

Record".
e Alarm (if exists) — Describes the current alarms opened by this model.

e last CPU timestamp — Describes the last timestamp (in server time) this model was evaluated by

the SM software.
e Remarks — Additional remarks.

Toolbar

The toolbar at the bottom of the Spatial Model window contains the following options:

Set selected model state to "run" Export models to files

Refresh view §¢| Server setup
View graphs for selected model ga| Run"what-if" simulations

Generate reports

R @O S

Set selected model state to & | Define anew model (in model editor)

Open selected model in model editor Set flow regimes and network regimes

The model editor is discussed in detail in Sections 4.3-4.5. The Graphs window is discussed in 4.6. Screens
for Flow and network regimes are discussed in Section 4.2. The simulations screen is discussed in 4.10.

Filter selection boxes
Figure 77 shows the filter selection boxes available on the SM screens.

Models in the pairs tab can be filtered by cluster (group of models). Measurement name, source station
(A), and target station (B). Triplets can be filtered by any of the three Stations in the model, see additional

details in Section 4.9. To filter the rows:
1. Select filters using the drop down menus.
2. Selecting which filters are activated using the checkboxes
3. Click the "Refresh view" button to immediately filter the results.

I Filver By Clusiar [T Filer By Magayrsmant W Filwer By Station A [~ Filwr By Station B

[T Filer By Ststion C

=| [Cortivey =] | Station A =] |

Figure 77: Filters for the Spatial Model window
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Figure 78 shows additional options for filtration and viewing. The first option in Figure HHH sets whether
the view will automatically refresh once every 5 minutes. If turned off, the view will refresh only when the
user clicks the "Refresh view" button. The second option in Figure 78 sets whether all models are
displayed, or only models in "Run" status (including flow time estimation and prediction).

W Update screen every 5 minubes

¥ Show only models in RUM status

Figure 78: Additional Filters for the Spatial model window

Status bar
The status bar found at the bottom of the screen features the following fields, from left to right:
- Total number of objects loaded.
- The number of objects performing flow time estimation, i.e., learning
- The total number of pairs performing prediction/ activated (HHH).
- The total number of pairs objects
- The total number of triplet objects
- Astatus line showing key messages, such as HHH
- The current server date and time

Panel tab

The panel tab shows an alternate view of all pair models, along with their state and common key
indicators. Figure 79 shows the Panel tab, while Figure 80 shows a "zoomed-in" view of one of the pairs
in the panel tab. Next, we describe the different fields available for each Pair model in this tab.

Spatial Model View = g
Click to access the Panel tab
Pairs | Trletf] Panel [fiams & Reports |
049 ~
gg? 37 Name Tu 52 Name [ L 93 Neme oH
[l Model time 2020/09/28 19:33:17 Model time 202005728 193332 Model time 2020/09/28 19:33:32
gg Model status RUN Model status RUN Model status [RUN
L Cumentvaive [ 08 I l I I Cumentalve [ 028 I | I l Cumentvalue [ 745 I l . I
. L3 Predicted value 068 Predicted value 023 Predicted value 750
s | Prediction error (%) [NEEIIN Prediction error () [IZIN Prediction error (7) [NREIN
101
2. Sourcevale [ 0571 Leg [0345  [Sourcevalive [ 0310 Leg [0135  |Soucevalve [ 7650 Leg [ 0135
121
122 Low High % Range Low High % Range Low High  %Range
3? User limits 001 100 100%  |Userfimits 020 0.0 100%  |Userfimits 650 850 100%
152 Stat limits 011 089 7948 [Statlimits 021 072 84637 [Statlimits 7.10 7.9 &
153 25 £ 3
170 Seatlimls  [To57 [Too1 [4038% Seatlimis 53— [Toz5 R [P [T« [ [N
];i Lastupdate  [2020/09/28 19.33:17 Lastupdate  [2020/09/28 19.33.32 Lastupdate  [2020/09/28 193332
179
180
187
188
189
1%
191
12
194
1%
1% v
=
F r I= L r [ Update screen every 5 minutes
[MidScuh & | [ =l [ | [ | [ =~ ¥ Show only models in RUN status
= -~
2 B0E8 e |
Total Objects:738 | Leam:0 | Predict:4 Pairs:262 | Triplets:476| [41]Romema | ROM2 | pH(Predict) Some models are missing. See log file 2020/09/28 19:53:18 Scan (sec): 939

Figure 79: The Spatial Model panel view.
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The different fields for each Pair model in the Panel tab, as in Figure HHH, are:

The name of the Pair model

The current model time (last processed record)

Current model status (Run/ Stop/ Flow time learning/ Prediction)

The current value in the target station

The predicted value for the target station, based on the source station.

Alarm indicators, from left to right: (marked by a red rectangle in Figure HHH)

o — marked by a red rectangle with an exclamation sign (turned off in
Figure HHH).

o _— marked by an orange rectangle with an exclamation sign (turned on in
Figure HHH)

o — marked by a yellow rectangle with an exclamation sign (turned on in
Figure HHH)

o - marked by a blue rectangle with an exclamation sign (turned off in Figure

HHH).

The user limits, as defined for the monitored measurement in the EDS model for the target
node.

The statistical limits for the target node measurement, as computed by the statistical limits
detector in the EDS model for the target node. The percentage found to the right of limits gives
the ratio between the range of the statistical limits and the user limits. Numbers under 100%
represent an improvement in the statistical limits compared to the user limits.

The spatial limits for the target node measurement, as computed by the Spatial Model
software. The percentage found to the right of the spatial limits gives the ratio between the
spatial model limits and the statistical limits. Numbers under 100% represent an improvement in
the spatial limits compared to the statistical limits.

Name &t pH
Model ime  [A020/06/26 00:01:10
Model status |RUN

Current value  [742

Fredicted value[746 | I! ! I

Low High % Rang
User lmits W IW
Stat lievits [7.13 [8.07 [44 35%
Seatlims  [5c [756 [2254%

Lastupdate  |2020,06/26 00-01:10

Figure 80: A Spatial Model panel item corresponding to a single Pair model. Alarm indicator are marked by a red rectangle.
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The different fields, such as percentages and alarms, feature a tool tip text label stating their
computation.

Alarms tab
The alarms tab, shown in Figure 81, shows the different the current open and historic alarms raised by
the Spatial Model software. Users can view current or historic alarms, and filter alarms by type and
location:
1. Switch between alarm types using the option boxes names "Current Alarms" and "Historic
Alarms".
2. For historic Alarms, you may filter by a "From data" and a "To Date". Filter are activated using
the checkboxes. Date selection is using the date and time field for each filter.
3. Filter alarm by type, using the check box fields on the top right. Alarms filters correspond to the
5 alarm types presented at the start of Unit C.
4. Since alarms may be raised from different objects, The user may filter alarms by clusters,
measurements and stations, using the filter selection boxes at the bottom of the screen.
After performing 1-4 (some steps optional), click on the refresh button found on the left of the

screen ().
Alarms will be presented in the table at the center of the screen. Alarms will feature:
e The object Number and Description (for the object generating the alarm)
e The description for the alarm
e Alarm start, trigger and end times. The trigger time is the start time + the delay time for alarm
see Sections 4.3-4.4 for discussion of delay times.

g

e The alarm age, in Minutes.
e The time of last update to the alarm record and additional notes.
Spatial Model View — [m) x
Pais | Triplets | Panel Alams & Reports |
g ;;o;';;le Eﬁzﬁ; 1::1: i [# Filter limits violation I~ Filter Poor Limits | Filier poor prediction I Filter NO data I Filter Triplets Alarms
I™ Filter OBJ
Y e et [7 ~Everts by ste hpes = =

~ Current & Historcal | Aggregate |

| Cluster | Station | Measument

| Object_Description | Alarm_Description | Start Time | Trigger Time | End Time | Age | Last Update | Note

[V Filter By Cluster I Filter By Measurement ™ Filter By Station A I™ Filter By Station B I” Filter By Station C ¥ Update sereen every 5 minutes
[Testhint -] | ~| [ -] [ =~ [ =l [ Show only models in RUN status
] [
2 (8 PR IR CIRGN

& ;|

Total Objects:763| Learn:0 | Predict:77 | Pairs:285| Triplets:478 | [165]Rom_SPA | Shap_5PA | Chiorine(Predict) | ‘Some models are missing. See log file I 2020/08/08 22:32:04
Figure 81: The alarms view
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Spatial Model View - o X
Pars | Trplets | Panel  Alams & Reports
o P FromDate  [2020/08/01 104115 —= ¥ Filter imits violation I Filter Poor Limits | Filter poor prediction [ Filker NO data I Filter Triplets Alarms
¥ ToDate [2020708708 10:4115 =
I™ Filter OB
[7 - Events by ste types = .
Curent & Hstoncal | Aggregate |
No | Custer | Saton ] T Object_Descrtion T Aam_Descrtion St Tioe. Tgger Time End Time Age | Lost Update Noe =
Tealet! Conductivty AL PP PL 183709 185225 1837.09| 362 004335
Jé 2 Teathet1 | |Redox [apepL 2020/08/06 18:37.09 | 2020/08/06 18:52:25 | 2020/08/06 183709 362 | 2020/08/07 004358
m TestNet1 oH AL PP PL 183918 18543 183914362 |2020/08/07 004543
%0 Testhet1 | oH [apepL 2020/08/06 18:3709 | 2020/08/06 18:52.25 | 2020/08/06 183709 362 | 2020/08/07 00:46:50
1 Teaet! Redox ALPPPL 183709 185225 1837.09|382 004704
25 Teathet1 Criorne AL PP PL 2020/08/06 18:37.09 | 2020/08/06 18:5225 | 2020/08/06 18:37:09 | 362 | 2020/08/07 00:4322
28 Teahet! Crioane ALPPPL 2020/08/06 18:37.09 | 2020/08/06 185225 | 2020/08/06 1837:09 | 362 | 2020/08/07 00:46:25
28 TeaNet1 Redox AL PP PL 2020/08/07 00.40:30 | 2020/08/07 005,57 | 2020/08/07 015241 |71 | 2020/08/07 015432
20 |Teanet oH ALPPPL 2020/08/07 00:40:30 | 2020/08/07 00557 | 2020/08/07 015241 |71 | 2020/08/07 015716
21 Testhet1 Redox AL PP PL 2020/08/07 00:40.30 | 2020/08/07 005557 | 2020/08/07 014232 |61 | 2020/08/07 01:46.35
2 Testhet1  Redax [aL PP PL 2020/08/07 01:42:32 | 2020/08/07 01:57:46 | 2020/08/07 132019 696 | 2020/08/07 13:26:40
28 TeatNat1 Redox AL PP PL 2020/08/07 015241 | 2020/08/07 02.07:55 | 2020/08/07 1330.28 | 6% | 2020/08/07 133506
24 Testhet1 | |Chione [aLpp pL 0D 2020/08/07 01:13.07 | 2020/08/07 01:42.27 | 2020/08/07 131719 | 724 | 2020/08/07 13:35:41
2 TeaNet! Conductivty AL PP PL 2020/08/07 132019 | 2020/08/07 13:35:31 | 2020/08/08 223042 | 1989 | 2020/08/08 223227 I
29 Testhet! |  Tubidty [aprpL 2020/08/0713.3028 | 2020/08/07 13:45.38 23042|19m 200
%5 Teaet1 Conductivy AL PP PL ND 2020/08/07 13.17:19 | 2020/08/07 13:46:36 | 2020/08/08 222955 | 1991 | 2020/08/08 223331
268 TestNet1 | Tubidty AL PP PL ND 2020/08/0713:17:19 | 2020/08/07 13:46:36 | 2020/08/08 212931 | 1932 | 2020/08/08 22.22:10
27 Teatht! Conductviy AL PP PL ND 2020/08/07 132509 | 2020/08/07 134029 | 2020/08/08 22:17:37 | 1971 | 2020/08/08 222235
M [TeaNat [Redox [aL PP PL WD 2020/08/07 13.25.09 | 2020/08/07 134029 | 2020/08/08 22:17:37 | 1971 | 2020/08/08 222300 -
[V Filter By Cluster I Filter By Measurement 7 Fi n 8 I Fi nC 7 Update screen every 5 minutes
[Testhiett =l [ [ 5| [ %] | =] % Show only models in RUN status
® B 06w e e &\
Total Objects:763 | Learn:0 | Predict77 | Pairs:285 | Triplets:d78 | Wait for task | B del issing. See log file | 2020/08/08 22:33:04 ]

Figure 82:Viewing Historic Alarms in the Alarms and Reports tab.
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4.2 Analyzing and choosing flow regimes.

This section describes how flow regimes and network regimes are defined using the Spatial Model
software user interface. To recap, flow regimes are recurring time periods, i.e. times of the day and day
of the week, that exhibit similar flow times between neighboring stations. Therefore, flow time
estimates are provided based on the different flow regimes. Network regimes are network states
describing if water is supplied from network-wide water reservoirs, external water sources, or the
network is transitioning between states. Network regimes are used to activate/ deactivate pair models,
since some pair models may be relevant only for some of the network regimes. See additional details in
Section 4.3.

4.2.1 Flow regime
The Spatial Model regimes manager can be accessed by pressing the 'clock' icon available under the
toolbar in the main Spatial Model window. The Icon can be seen at Figure 83.

B

Figure 83: The icon for the Spatial Model regimes manager. Found in the main Spatial Model window toolbar

The Spatial Model regimes manager is shown in Figure 84. We describe the different on-screen elements
on the next page.

Spatial model regimes manager X

Flow Regmes | Network Regmes |

= Eereaareeeenn
0 Winter_Weskday_Preday 1 NHNYYYYYNNN | YYTreNN 0 7
1 Winter_Weekday_day 1 NNNYYYYYYNNN | YYYYYNN 8 2
2 Wirtes_Frday_preday 1 NHNYYYYYYNNN | NMNNNYN |0 7
3 Wintes_Friday_EartyDay 1 NNNYYYYYYNNN | NMNNNYN |8 "
4 Winter_Friday_LateDay 1 NNMYYYYYYNNN | NNNNNYN 15 18
5 Wintes_Friday_Evening 1 NHNYYYYrrNNN | NNNNNYN 19 B
6 intes_Saturday_Preday 1 NHNYYYYYYNNM | NMNNNNY |0 8
7 Winter_Saturday_Day 1 NNNYYYYYYNNN | NNNNNNY E) 2
8 Summer_Weekday_Preday 1 YYYNNNNNNYYY | YYTYNN
9 Summer_Weekday_Day 1 YYYNNNNNNYYY | YYYYYNN 13 23
10 Summer_Friday_Preday 1 TYYNHNNNNYYY | NMMNNYN 0 5
1 Summer_Friday_EearyDay 1 YYYNNNNNNYYY |NNNNNYN 6 ]
12 Summer_Friday_LateDay 1 YYYNNNNNNYYY | NNMNNYN 10 19
13 Summer_Friday_Evering 1 TYYNNNNNNYYY |NNNNNYN 20 ]
14 Summer_Saturday_Preday 1 YYYNHNNNNYYY | NMNNNNY |0 8
15 Summes_Saturday_Day 1 YYYNHNNNNYYY | NNNNNNY 9 23

(double click line for edif)

Special dates

Figure 84: The Spatial Model regimes manager
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The top table on Figure 84 shows the available from regimes (indexed starting from 0), along with their
names and recurring time periods. Recurring time periods for flow regimes are defined by the months of
the year, days of the week and hours of the day. The Letters 'Y' and 'N' denote which days and months
are active for the regime (Y) and inactive (N). It is up to the user to verify that inserted regimes cover all
times and dates, and that each time-date combination is covered by a single flow regime. To edit a flow
regime, double click on its row. This will bring up the Flow Regime editor shown in Figure 85. After done
editing all flow regimes, click the save (diskette) icon.

Special dates - forcing calendrical dates of one type to become another type, e.g. to mark flow regimes
for holidays, are defined using the 'special dates' list box at the bottom of the screen.

Figure 85 shows the Flow regime editor. This editor shows: the regime name; if it is activated (deactivated
regimes are not considered for flow time estimation); and the months, week days and hours the regime
is active. Activated months and days are shown in two separate tables. Click on the table rows to change
table values (Y/N). The starting and ending hours for the regime are defined by the selection boxes at the
bottom of the screen. Click the OK or cancel buttons at the bottom of the screen to approve or cancel
your choice.

Edit Flow Regime X

Flow Regim  [summer_Weekday_Preday

Active V Active
Months Week Days
(Click table row to change values) (Click table row to change values)
Month Yes/No | Week Day Yes/No
¥ Y
Feb Y Mon Y
Mar Y Tue ¥
Apr N Wed Y
May N Thu Y
Jun N Fn N
Jul N Sat N
Aug N
Sep N
Oct Y
Nov . Y
Dec Y
From hour [ﬂ
To hour [ﬁ

-1

Figure 85: Flow regime editor.
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4.2.2 Network regimes
The second tab in the Spatial Model regimes manager shows the different Network regimes (seen in
Figure 86). The network regimes, also listed at the start of Unit C, are:

State E: Water supplied from external source

State R: Water supplied from reservoirs

State E—R: Network is transitioning from state E to R.
State R—E: Network is transitioning from state R to E.

Transitioning between network states: The algorithm by which the SM decides on the current network
regime is as follows. The Spatial Model tracks flow variables defined by the user. For each flow variable,
the SM evaluates a state machine, for its current state. The per-flow-variable states are seen in the last
column of Figure 86, with the list of possible per-variable states being identical to the list of possible
network states (regimes). When all monitored flow variables reach the same state, the network regime
is changed to this state/regime. In other words, it is a voting mechanism requiring a unanimous vote.
We move to describe the per-flow-variable state machine.

Spatial model regimes manager >

Fow Regmes Namuknaﬁmu]

NElFElE

Currentnetworkstate |FlowFromExternalSource Show lastX hours [ 2 =

7 3\

DOFL[ seurcen |

AT NGRS NDOGTOSUN  ANOGACAN 2000627 100600

Figure 86: Network regimes definitions tab
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4.2.3 The per-flow-variable state machine
For each variable, the user defines:

- A switch-point (abbreviated to threshold SP)

- A positive and negative derivative thresholds (abbreviated to threshold PD, and threshold ND).

- The number of records used to compute the derivatives, or average the flow time raw values,
abbreviated to N.

- The delay time, in minutes, giving the minimal time the state machine must spend in each state
(to avoid jitter).

For each flow variable defined, the SM checks:

- Isthe current flow value is above or below the current set point?
- Isthe current derivate, given by the change in the flow value across the last N records (N being
the number of records defined by the 'Records' field) above or below the PD and ND thresholds?

The transition rules for the state machine are described below. IF/THEN statements are marked with
bold/underline, conditions on flow values are marked in red, and conditions on flow value derivatives
are marked in blue.

Rule 1: If the network is in state 'R' and

all monitored flow values, averaged across N records are above their threshold SP and
all monitored flow value derivatives are smaller than their respective threshold ND values then:

transition to state 'R->E'.

Rule 2: If (the network is in state 'R’ or state 'R->E') and

all monitored flow values, averaged across N records are below their threshold SP then:

transition to state 'E'.

Rule 3: If the network is in state 'E' and

all monitored flow values, averaged across N records are smaller their threshold SP and
all monitored flow value derivatives are higher than their respective threshold PD values then:

transition to state 'E->R'.

Rule 4: If (the network is in state 'E' or state 'E->R') and

all monitored flow values, averaged across N records are above their threshold SP then:

transition to state 'R'.

A diagram for the state machine, along with the possible transitions between states is given in Figure 87.

107



State E

A
Rule 2 Rule 2
State R->E State E->R
Rule 1 Rule 2
v
State R

Figure 87: Network regimes state machine and transition rules

108



4.3 Pair Model — Definition

This section describes the spatial model editor, allowing the user to edit existing or new models. Sections
4.3-4.5 of this manual describe how to use the editor to edit pair models. Section 4.9, discussing triplet
models describes how to create and edit triplet models. The model editor can be accessed by:

- clicking or a (pair) model in the spatial model main window, described in Section 4.1, and then
clicking the model editor button ()
- clicking the 'create a new model' button (@') on the spatial model main window.

The spatial model window is shown in Figure 88. When creating a new model, the fields shown in the
figure will be blank. When editing an existing model, the fields will be filled with model's details. The
different field types (and field groups) in Figure 88 are numbered 1-8, in red. In the next page, we describe
the buttons on the left side of the editor, along with all fields found under the basic setup tab. Additional
tabs, explaining how to review estimated flow times, predictions performed and edit advanced model
parameters are described in the next sections.

Spatial Model Editor X
SPA Link description | a [ Link Type Pair
Steus oo :—G—j ~—o
I 00000

Basic setup ] Triplets setup | Prediction Results | Log data | Advanced | Leam Chart |

| seionn | S @ srswicon | = 1
H StationB | | Sensor Station B | ~|
=]
— StationC | | Sensor Station C | |
Cluster | | 6 Regime | =
Q
[T Pair sensors profile | j
Valid Low I
| 8 I G Delay after regime change (min) 30 3
e Valid High I G
0 Alarm Trigger Delay (min) 15 =
Learning days for prediction 14 5: [~ Learning period for lag
=T . F | 711 -
Lag time source 0 rom 2020/06/27 11:26
I * Learn from pair history @ Fixed Ta [20200627 1126 =
" Use other pair data
" Relative to current date (days) 120

~| | ooooo

Last learning of flow time | " All historical data

Figure 88: The Spatial Model editor. Numbers corresponds to steps when building models, described in Section 4.3.
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The buttons found on the left of the Spatial Model Editor and their corresponding actions are:

H Save model = New Model

N 2
|_-_\ (@ ] . .
% Delete model I b I Set model to 'Run state

Set model to 'stop' state 0 Refresh fields

(® D

Request model flow time estimation

firg

The 'New Model' button will clear all fields, and allow a new model to be defined. The 'Delete Model'
button will delete the current model. The 'Save Model' button will save the current model to the EDS/SM
database, after changes have been made to model definitions. The 'lever-up' and 'lever-down' buttons
will move the model between 'Run' and 'Stop' states, respectively. The 'Refresh' button will reload all
existing fields, as they are defined in the EDS/SM database. The 'Request model flow time estimation'
button will inform the SM that this model requires estimation of flow times, even if the last estimation of
flow times for this models was made less than 24 hours ago.

Next, we describe the different fields required for the basic setup of a pair model. The steps, numbered
1-8 below, correspond to the numbering found in Figure 88.

Step 1 — select model type

Select the model type to be 'Pair' in the 'Link Type' selection box on Figure 89.

The illustration on the right of the selection box should display a pair model, with a source and target

station.
Link Type [
1- Pair . .
2 - Fork Out
3-Fork In

4 - Triplet

Figure 89: Model type selection box
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Step 2 — select model nhame

Click the button with the label '..." to edit the model's name. The 'edit link name' window, shown in
Figure 90 will appear. The window shows the current model name, a suggested model name and an

editable field with the new name selected.
Edit link name X

Current name [

Suggestion ‘ StationA | StatinB | Chlorine

New name ‘ Station A Station B | Chiorine

=E

Figure 90: Model name selection box

Click this button to exit the window without selecting a new name

Q)

Click this button to copy the name suggested by the SM to the new name field

Click this button to save the currently selected name, fund under the 'new name' field

oz

Step 3 — select model stations

Select the model stations, denoted by A and B for the source station and target station, respectively. For
station, select the station name, along with the sensor name (4 selection boxes total). The measurement
for the selected sensor will be displayed to the right of the sensor name for each sensor.

Station Cis used in Triplet models alone.

Step 4 — select clusters, regime and sensors profile.

Step 4a: select cluster — each pair is part of a cluster. Clusters are groups of models, usually defined by

geographical region. Clusters are used to filter models in the SM main window, so that only models of a
selected cluster are viewed, see details in section 4.1. The user may type a new cluster name under the
‘cluster’ field, or select one of the existing cluster names

Step 4b: select network regimes -

Use the 'Regime' drop down menu (Figure 91) to select on which network regimes the model will be
activated — all hours/ water supplied from storage/ water supplied from an external source.

Regime , _:_,
0 - All hours

Pair sensors profile 1 - Storage regime
2 - Extemal supply

Figure 91: Selection box for the network regimes in which the model will be enabled.

111



Step 4c: select sensors profile -

Each pair has a sensors profile selected, as shown on Figure 92. The available profiles are:
e Similar sensors — sensors are for the same measurement and from the same manufacturer.
e Similar sensors, different producers — sensors are for the same measurement but from different
manufacturers.
e Different sensors producers — Sensors are for different measurements

Pair serscen profile [0 - Sidar sensoes 1|
{0 - Semilar sermors
_ 1 - Similar jdiffensnce prodiscerns)
Deelary miter regeme chinod 3 . [iprerce senson

Figure 92: Select pair sensors profile

The sensor profiles are used to categorize pair models when producing reports in the SM software.

Step 5 — select valid limits

Select the upper and lower limits for both the source station and target station, in terms of measurements.
Measurements above or below these values will be regarded as technical faults and will be removed from
statistical analysis.

Step 6- Select delay times
The basic model definition has two delay times defined:

Delay after regime change- following this time (in minutes) after a network regime change, the model will
not generate alarms. Note that this condition is additional to the active regime selection in step 4b (pair
active in network states E/R/E&R).

Alarm trigger delay- this delay time is the amount of time the target measurement must exceed the spatial
model limits (shown in Sections 4.1 and 4.6 for each model) for an alarm to be trigged. Before this time,
the alarm will be considered as pending.

Step 7- select the lag time source, and nhumber of data days used for prediction

Learning days for prediction — this field sets the number of days, prior to the current EDS monitoring date,
that will be used to construct the prediction model. Recommended values are 14-30 days, with 30 days
required for general sensors, and 14 days required for high-quality physical measurement sensors.

Lag time source — sets from where flow time estimates are taken:
e Learn from pair history — this pair model estimates its own flow time.
e Use other pair — this pair model will copy its flow time estimates from another pair model,
between the same source and target stations. When selecting this option, the user must also
select from which pair model should the flow time estimates be copied.

The field 'Last learning of flow time' will show the last time, by server time, that flow time estimates were
computed for this pair model.
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Step 8 - select the learning period for lag time
The user must select the learning period for the lag time, is the pair model will estimate its own flow
time (first option in Lag time source, step 7). The options are:
o Fixed —the user may select fixed dates from which data will be taken for flow time estimation
e Relative to current date — the user may select the number of days, prior to the current date,
used for estimating flow times.
o All historical data — all available data will be used to obtain flow time estimates.

Following steps 1-8, the user must save the selected configuration. The Spatial Model editor will request
the user to save the configuration, as in Figure 93.

Spatial Model Editor X
SPA Link description || Link Type
[1- Pair
e poE R |
Id 00000
Rasir: iy | Timtata aoivim | Deakinbinn Dasedio | 1an dsta | Bduanmad | 1amm rhaa |

Figure 93: message requesting the user to save the current model configuration.

Following the configuration, set the model to run using the 'lever-up button'. On screen fields will be
grayed out, as in Figure 94, except for the 'Stop', 'Refresh' and 'Learn' buttons. Stopping the model will
make all fields editable again.

Spatial Model Editor X
SPA Link description | AggH | Link Type
|1-Par |
s O -
Id 00056
Basic setup | Triplets setup | Prediction Resuts | Log data | Advanced | Leam Chat |
:* Station A [Bet_Hakemn j' Sensor Station A |‘:'"'l d su
H SwfionB [Domesicz -] Sensor Station B [pH =l su
=]
Station C v Sensor Station C | -]
X
Cluster Beit_Hakem - Regime 0- Al hours - |
Qo
= Pair sensors profile
Valid Low 40
8 Delay after regime change (min) I 30 3
Valid High =
e Alarm Trigger Delay (min) 15
Learning days for prediction a0 EI Leamning period for lag
=T E AR
.E Lag time source R 2019/11/02 11:19
£ & To 2019/11/021119  ~
s
I T 00000
= n e (o
Last learning of flow time |2020/06/27 11:19:21

Figure 94: The model editor for a running model
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4.4 Pair Model — Advanced Parameters
This section describes the advanced parameters tab, containing additional model configuration
parameters. The tab is shown in Figure 95.

Spatial Model Editor X
SPA Link descripbon | _l Link Type
Id 00283 Pressure_Reducer->Reservoir_in

Basic setup | Trplets setup | Prediction Resuls | Log data  Advanced | Leam Chart |

‘. Bin size (Min) 15 ’ (15) Min Lag Time (min) 0 5: (0)
Windows step (man) 30 3: (30) MaxLag Time (min) 1200 == (1200)
| |
Windows size (min) 90 3: (S0) Maximum time measurment allowed to be constant (Min) 60 32 (60)
2 Lag Time Resolution (min) 15 33 (15)
| g ' Partition for flow estmation [ 7 5; (7 Alpha lower (Pair prediction low limit) |  0.01 32 (0.01)
[_j Alpha upper (Pair prediction high limit) I 0n E} (0.01)
NN.NR Segments 200 3: (200)
NN Kernal Size 005 = (0.05)

Expend Limits (%) IO

: Export prediction model diagnostics to files
The defaultvalues are in parentheses

Figure 95: The advanced parameters tab
The following parameters are found in the tab:

Bin size — measurements are binned across time, with the median value in each bin taken as the
representative value, as discussed in Section 2.1. This value sets the size of the temporal bin, in minutes.

Window step — When computing the sum of the correlation statistic, across all window pairs, this will
give the step size, in minutes, when incrementing the pointer across the two times series. Since each of
the two time series is highly correlated across time, the correlation statistics for pairs of windows
changes very little, when incrementing window positions by a small value in time. Hence, it makes sense
to increment windows by a more than a single measurement, e.g. , increment window positions by 30
minutes, each increment, when iterating over all pairs of windows. See Section 3.4 for a detailed
description.
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Window size — The size of the temporal window, in terms of minutes, for computation of the correlation
between the source and target measurement series. See Section 3.4 for a detailed description.

Lag time resolution — when estimating the score function across lags, this will give the resolution of the
candidate lag times, in terms of minutes, e.g., estimate the possible lags at 15 minute steps: a flow time
of 0 minutes, 15 minutes, 30 minutes, 45 minutes and so on.

Partition for flow time estimation — The number of partitioning units, when using a leave-one-out
estimation method to assess the sampling error of flow time estimate. The full algorithm is described in
Section 3.4, Unit B.

NN Nr segments — The total number of segments used for the kernel estimator regression model, as
explained in Sections 2.5 and 3.5. Note that this is the number of segments used for the entire dataset (X-
axis), not just for computing the local prediction estimate.

NN Kernal Size - The relative portion of all segments used for computing the kernel model's predictions,
as explained in Sections 2.5 and 3.5.

Minimum and Maximum lag time — The minimum and maximum times for flow time estimate candidates,
in minutes.

Maximum time measurements is allowed to be constant — If a measurement is constant for more than
this time, additional constant measurements will be considered invalid.

Alpha lower limit and Alpha upper limit — The upper and lower non-coverage probabilities for the
prediction interval constructed by the prediction model. For example, by setting these values to be both
0.01, the upper and lower limits computed by the pair's prediction model will provide a 98% prediction
interval. The 98% prediction interval will has a 98% probability of having the actual measurement inside
it, for each measurement.
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4.5 Pair model — Flow time estimation and diagnostics for flow time estimation

In Unit B, Section 3.2, we reviewed the algorithms and methods used for flow time estimation in Pair
models. The 'Learn Chart' tab is used to view the score function, by flow regime, after flow times have
been estimated for each flow regime. Figure 96 shows the 'Learn Chart' for an example model. The score
function is plotted for each candidate lag value. The selected lag\ selected delay time is marked by a red
line on the graph, and is written under the label "Selected Delay time". The number of window pairs
used for flow time estimation is also presented on screen. The Flow regime to be presented may be can
be selected using the drop-down menu on the left.

Spatial Model Editor X
SPA Link description | P Link Type
IT - Pair
e P N
Id 00055

Basic setup | Trplets setup | Prediction Resukts | Log data | Advanced Leam Chatt |

= Selected Delat Time (Min) [820
—% |  Flow regim >
Number of Windows 1424
I,__\ Score Function by Delay Time Chart
:—x 5.8
2] 3
9. oS
m 54 - R s ..'
| o I oo L .
J=Send oo ©e
o
~ § 5.2 S . 1 %
* o® = ..
=l Bl .. , -
W 5045 & Pl & oy
= ° % e ® CY
— o 48 .°
3
oo 18,7
46 ot 2 oo =
°
4.4
4.2
0 200 400 600 800 1000 1200 1400

Figure 96: The 'Learn Chart' tab of the model editor, showing the score (objective) function for each flow regime.

The 'Log Data' tab shown in Figure 97 lists the messages and error descriptions generated by the pair
model. Figure HHH shows a possible output, where the model estimated flow times and preformed
predictions correctly. The log messages detail the Last time CPU times were given to the model, the last
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target station timestamp processed, the dates used for flow time estimation, and other descriptive
fields.

Spatial Model Editor X
SPA Link description A Link Type
1-Par -
sSmus e D O
id

Basic setup | Trplets setup | Preciction Resuts  Log data | Advanced | Leam Chart |

Last CPU time..................:2020/06/27 11:40:58
Last CPU Prediction time.......:2020/06/27 11:38:51
........... :2020/06/26 23:08:09
Target station timestamp.......:2020/06/26 00:01:10
Last processed timestamp.......:2020/06/26 00:01:10

2020/06/27 11:38:51 - Target time stamp is :2020/06/26
00:01:102020/06/27 11:38:51 - Timestamp from target station:2020/06/26

00:01:10

2020/06/27 11:38:51

2020/06/27 11:38:51 - Prediction for 2020/06/26 00:01:10
2020/06/27 11:38:51 - start load data for prediction
2020/06/27 11:38:51 -

2020/06/27 11:38:51 - Model set Learning dates
2020/06/27 11:38:51 From Date :2020/05/28 11:38:51
2020/06/27 11:38:51 To Date :2020/06/27 11:38:51
2020/06/27 11:38:51 -

b | & |99 [ [%D |28 |

2020/06/27 11:38:51 - Get station A data

2020/06/27 11:38:51 - Get station B data

2020/06/27 11:38:51 - Set flow regime:

2020/06/27 11:38:51 - Go to Pair Object for prediction.
2020/06/27 11:38:51 - Prediction computed OK. (0/1)
2020/06/27 11:38:51 Prediction save to database
2020/06/27 11:38:51

Figure 97: The 'Log Data' tab shows the error and message log for the pair model.
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4.6 Pair model — Predictions, charts and diagnostics for prediction models

The 'Prediction Results' tab in the Spatial Model editor describes for each pair model:

o Model prediction for the target node by timestamp

e Actual values for the target node, by timestamp

e Spatial Model limits (both lower and upper limit) used for detecting abnormal events in the
target node.

Figure 98 below shows the Prediction Results tab for a conductivity-based pair model.

Spatial Model Editor x
SPA Link description | Acb-Conductiviy ] Link Type
|1-Par
Stas [RUN 1 |
Id 00265 |
Basic selup | Trplets setup Prediction Results | Log data | Advanced | Leam Chatt |
§'= From [2020/06/26 1143 =] To [2020/06727 1143 =]
_ Time Stamp | Lowlimt | Highlimt | PredictedViak ActualViah
612.74 457.17 443.00
——— | 2020/06/27 11:27:29 280.09 §12.70 45713 44300
=W | |2020/06/27 11:12:21 275.14 607.75 452.18 41650
=x 2020/06/27 10:57:17 | 260.70 59331 43774 402.00
2020/06/27 10:42:13 237.76 570.37 414.80 398.00
@] 2020/06/27 10:27:04 237.76 570.37 41480 40850
2020/06/27 10:11:56 | 232.28 564.89 409.32 47050
@ 2020/06/27 09.56:51 224,88 557.49 401.92 52650
—— | 2020/06/27 09:41:43 22488 557.49 401.92 531.00
=) | [2020/06/27 092732 22438 557.49 401.92 531.00
e 2020/06/27 09:26:35 22538 557.99 402.42 531.00
— | |2020/06/27 03:11:29 229.06 561.68 406.10 529.00
2020/06/27 08:56:22 | 235.21 567.83 41226 52900
T | 2020008727 08:41:22 250.16 582.77 42720 52750
2020/06/27 08:26:14 250,16 582.77 42720 527.00
2020/06/27 08:11:15 272.15 604.76 44919 530.00
2020/06/27 07:56:08 | 350.57 683,12 52761 53250
2020/06/27 0741:00 356.65 689.26 53369 534.00
2020/06/27 07:26:57 | 356.65 689.26 53369 534,00
2020/06/27 07:25:53 | 356.91 689.52 53395 534.00

Figure 98: The 'Prediction Results' tab shows the predictions performed for the target node, along with the upper and lower

limits and the actual values measured in the target node.

Next, we review the different charts available for each pair model. The charts are accessible through the
Spatial Model main window, by selecting a pair model in the SM pairs tab, and clicking on the 'graphs'

button in the main menu toolbar ( M ).

After opening the charts screen for a pair model, the Spatial Limits chart for the model will appear, as in
Figure 99. The Spatial Limits charts presented the actual, predicted and spatial limit values for the pair
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model's target node, in a time series chart format. A legend explaining the color coding is featured
above the graph. The user may select different dates to display values for, and click the refresh button

a
(ﬂ) to view an updated graph.

SPA Pairs Charts - [m] "
SPA Link description [212 [T | Chomne [Soatal s =]
Model [T Variable  [Chionne Urits mg/L
Statdate [202009/21 195508 Eddate  |NZUIZB 1R = <] =
Chat
154 A= e | A <o Pr | Vitaton | Histogram | |
Wactualjmgl) W Predicted ympl) B Low Limit (mgL) B High Limit (mpL) ™ Force ¥ scale (not auto scale)
Q L Min [0 Max [T
E = ™ Show uses limit
o M r"\ R - User High [0:800
@ i r ! lU \ h : m -"I_l ! UserLow [01.200
L I I I T 1 I Al r M
rll e IL A [ A el j L ‘. —"I i' I~ Show stat limits
vy T NLASTRL F Y f‘ m‘ A"J el '_'rfJ ;"fl ; W "Tf\mu sathigh [1733
il b |
o V) . . I]‘I_' . 4 I. L”l | Satlow  [0213
U | V 1 ™ Show markers
éax
15 Delay/Expend parameters
@ Model Valoe
020 Expendiimis (%) | 0
Delay time (minutes) [ 15 =
015
£ Simulation Values
010 Expend limits (%) [ 0 =]
- Delay time (manutes) | 15 3: |
MAN0N 00547 A0 0205 V0V 2136 W09 14:28:16 200527 12064 200928 183035
Ready.

Figure 99: The SPA pairs chart window show the actual, predicted and limit values for the target node in a pair model, as a time

series.

The user may select additional graphs, using the drop down menu, on the top right of the screen. The
different charts options available are shown in Figure 100.

Spatial Limits |
Actual Vs Predicted

Prediction emor histogram

Spatial limits violations

Source and Target Original Leaming set adjusted for lag time

Figure 100: Type of charts available in the 'SPA Pairs Charts' window.

We proceed to reviewing the different types of charts available.
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The 'Spatial Limits Violations' chart is a bar plot stating the number of measurements that featured a
violation of the spatial model limits, and the number of consecutive violations of the spatial model limits
up to that measurement. For example, the graph depicted in Figure 101 shows:

e 6 measurements that featured a violation of the spatial model limits, with no previous violation
of the limits in the time prior to the measurement

e 4 measurements that featured a second violation (in-a-row) of the Spatial Model limits.
e 2 measurements that featured a third violation (in-a-row) of the Spatial Model limits.
e 2 measurements that featured a fourth violation (in-a-row) of the Spatial Model limits.

e 2 measurements that featured a ninth violation (in-a-row) of the Spatial Model limits.
o 1 measurement that featured a tenth violation (in-a-row) of the Spatial Model limits.

This graph can be interpreted as a:

e Two events of Spatial Model limits violations lasting for a single measurements, together with,

e Two events of Spatial Model limits violations lasting for two consecutive measurements,
together with,

e Asingle Spatial Model limits violation event lasting for 9 consecutive measurements, and
e Asingle Spatial Model limits violation event lasting for 10 consecutive measurements

(6 events total).

SPA Pairs Charts

- [m] x
SPALink description [ A-B-Conductivity [Spatial fmis vioiations =l
Modce! Station B Variable Fﬁm Units imicS.
Start date [2020/05/28 114512 —= Enddate  |2020/06/27 114512 —
Frequency and Length of Violation of Spatial Limits Lne | Ac <> Pr Vication | Histogram |
7.0
I™ Force Limits
6.5 SPA Limits change (%)
0 =
6.0+ Delay time (samples)
0 =
5.5
5.0 ™ Predicted > State High
I™ Predicted < State Low
% 4.5
= 40 [This chart type enables to simulate
g amount of violation with different
‘g a5 spatial limits and and delay time (sample:
S 3.0
g 2.5
2.04
1.5+
1.04
0.5
o.0-
1 &
Length of Event (Samples)
[Reading. 10

Figure 101: Bar chart showing the number of timestamps with X consecutive violations of Spatial limits, X being a number of
samples. For example, in the above graph, 2 events violated the spatial limits for 9 consecutive measurements, and 1 of the 2
events violated the spatial limits for an additional, 10t consecutive measurement.
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The 'Spatial Limits violations' chart allows the user to run a 'what-if' analysis, testing how would the
number of events change if:

e Spatial model limits were increased or decreased by a constant percent
o The delay time for raising an alarm was different, in terms of the number of observations.

In order to run a 'what-if' analysis, click the 'force-limits' option as shown in Figure 79 and click the
O
refresh button (ﬂ).

SPA Pairs Charts - m] X
SPALink description | A-B-Conductivity [Soatal s victations =
Model | stations Variable  [Conductivity Units mics
Startdate |2020/05/28 114512 —= Enddate  |2020/06/27 114512 —
Frequency and Length of Violation of Spatial Limits Une | Ac <> Pr Viclation | Hitogram |
15
¥ Ferce Limits
149 SPA Limits change (%)
2 =
13 Delay time (samples)
124 0
b I~ Predicted > State High

104 I Predicted < State Low

[This chart type enables to simulate
8- amount of violation with different
spatial limits and and delay time (sample:

Number of times event occured
h

o 5 10 15 20 25 30 3s 40 45
Length of Event (Samples)

Reading..3303

Figure 102: The user may run a "what-if" analysis, increasing or decreasing the SPA limits by a fixed percentage, or changing the
delay time. The "what-if" scenario can be run using the "force limits" option on the right.
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The 'Actual vs. Predicted' chart (shown in Figure 103) allows the user to view the actual values measured
in the target station along with their predicted values. Each point represents a single data point (time-
stamp). The user may scale the axis, as shown in Figure 104.

SPA Pairs Charts - [m] X
SPA Link description | A-B-Conductivity Actual Vs Predicted j
Model | stationB Varisble  [Conductivy Units [ricS
Startdate |2020/05/28 11:4512 = End date 2020/06/27 11:45:12 =
i ol Li Lne  Ac <> Pr | Vioation | Histogram |
ml "] " Predm ty] hr spam' Lnk ™ Force Xand Y scale (not auto scale)
0 P
700 Min
650
™ Show 45 degree line
00 . )
(set max and min field to show 45 line)
550
5
fm
% “
L) M
Iw
[
bl
mw
150
100
Ll
D% M W M H W W M &8 W W W W W
ActalficS)
Ready.
Figure 103: Actual Vs. Predicted graph for the target node in a pair
SPA Pairs Charts - o x
SPA Link description [ “A-B-Conductivity Actual Vs Predicted ~|
Model | stationB Variable Wﬁy Units ImicS
Startdate [2020/05/2811:45:12 == Enddate  |2020/06/2711:4512 =+
A | " e Line Ac <> Pr | Violation “’ﬂ
(eIl by Lok ¥ Force Xand Y scale (not auto scale)
0 ™ P —
630 80 Min  [400
660 0
[V Show 45 degree line
0 M P b (set max and min field to show 45 line)
(7] ﬁ Y 2
600 v 49 0
S w
Eq 5
E 540 y 5
3 520 ® ]
a
50 50
'} “®
I} ®
“ @
0 2
w - %0
W W & M 0 0 S0 %0 50 60 60 60 60 60 W
Actual fmicS)

Ready.

Figure 104: The user may set the X and Y scales for the Actual vs. Predicted graph using the "Force X and Y scale" option on the
right (marked in red).
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The 'Prediction Error Histogram' chart, shown in Figure 105, shows the distribution of prediction errors,
for the pair model using two scales: engineering units (in brackets), and relative part of the range
defined by the user limits (next to the percentage sign).

SPA Pairs Charts

- =] x
SPA Link descripion [289 | Condudtiviy [Predicton smor atogram =]
b [ e O —
Staridate |2020008/22 120415 -5 End date 20200929 120415 = _<|_’J
s | Ot | What |
= Prediction Error Distribution (% of records) [Eng Units] e[ Ao <P Weonon | Fiorem |
Q (-3
a7
g .
& | -
4.0
36+
a®= 3204
2.6+
2.0
1.6+
1.0+
0.5
-3%%“ [-182.02] -16.00% [-81.01] oov;n‘m (=] +16.00% [+81.01] +30.00% [-1682
-

|Rieading. 202070917 21:08:47

Figure 105: A histogram for the distribution of prediction errors.
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The 'Source and Target Original Learning Set (adjusted for flow-time)' chart presented the data points
used to build the prediction model, as explain in Sections 2.5 and 3.5. The pairs of points represent target
node measurements, along with their flow time adjusted source station values. A pair of points in the
chart, (X,Y), represent values measured at the source and target stations. The two measurements are not
taken at the same time, but at a time gap according to the estimated flow time between stations. Note
that not all points in the graph use the same flow time (lag time)- the time difference used for associating
X and Y measurements is taken based on the time stamp and flow regime associated with the target node/

Y value.
SPA Pairs Charts - o X
SPA Link description “A-B-Conductivity Source and Target Original Leaming set adusted forlagtime v
Model Fe— Varisble  [Conductivty Units mcS
Startdate [2020/05/28 115810 — Enddate  |2020/06/2711:58:10 —
Adjusted leaming set of source (x axis) vs Target (y axis) Le Ao <o>Pr | Vilston | Hetogram |
¥ Force Xand Y scale (not auto scale)
800 Max  [700
750 Min  [400
100
650 [V Show 45 degree line
) (set max and min field to show 45 line)
550
00
v
2450
£
<
°
g 30
Fu
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0
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100
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0 T T T T T T T T T
0 L] 100 15 00 »0 300 30 400 450 50 550 00 50 80
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Figure 106: A scatterplot showing the actual target station values vs. the lag-time adjusted values from the source station.
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4.7 Pair model — Connecting to EDS, defining detectors and delay time

This section discusses how to connect the SM to the alarm logging and notification management in the
EDS system. Users are encouraged to review the types of alarms, their meaning and trigger conditions,
and their indicators, at the start of Unit C and at Section 4.1. Note that only SM limit violation alarms
trigger an EDS alarm. All other alarm types (poor limit/ poor violation/ no data/ Triplet alarm) will be
added as secondary alarms (descriptive), to the limits violation alarm.

To connect a alarms from SM model to an EDS model perform the following steps.

Step I: Open the EDS model manager form for the model to which you want to connect SM alarms. The
model manager window can be opened through the EDS main window. Figure 107 shows such a form
after opening.

Step IlI: Select the "Detectors" window, by clicking the the "Detectors" button marked by a red rectangle
in Figure 107.

Mindset - Detector [Ver 2.2.13.6] Model Manager Form. Model name: — [m] x
Last timestamp processed 2020/08/24 17:11:44
£~ rQy | = I | ML 0
m g -9 M o] ) Model status RUN

- | Close displayed tab Detectors:15/33

Menu i | Variables Fules Charts Menitored Data

Model Motes

— Rules violation
2 5B || .
— - Similarity for known Hazard Event
Varnables Rules Sources Learn

Probability for Abnormal event

alny
te- 1t [@ Sensors Problem
Similarity Detectors Test Monitor .
Event Severity Low Medium High
/J'/ N @ Advisor Remarks Access control NOINDICATION
bl [ Display non-validation only
Events Charts Reporis Validation
Load XML Save XML Save to DB Setup

Model quality log

" Poor rang for low statistical limit for variable * Chlorine

“ Poor rang for low statistical limit for variable * Conductivity
* Poor rang for low statistical limit for variable * Pressure

" Poor rang for high statistical limit for variable ™ Turbidity

* Some of mode!’s detectors are unstable *

Figure 107: The EDS model manager window for a specific EDS model. The button used for accessing the Detectors screen is
marked in red.
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Step lll: Figure 108 shows the Detectors window for a given station. The "add new detector" button is
marked in red. Click on this button to add a new detector, connecting SM models to the EDS.

Palin.N

Y 4|3/ (2] (8]

!

ML

1) Mindset - Detector [Ver 2.2.13.6] Model Manager Form. Model name:

3

= | Close displayed tab

Menu | Variables ‘ Rules | Charts | Moritored Data | Detectors |

— O *
Last timestamp processed 2020/08/24 17:16:45
Model status RUN

Detectors:15/33

4]

ox Delay after Delay sfter last Motification A —Filter detectors by variables
e oper change event close policy
0 230 0 0 0 [~ Activate filter by variable names
"] Chlarine
! 0 o "] Conductivity
a 30 a [] Flow
NO_SIMILAR 1 3 [ e
] Pressure
WAR_ROC Chlorine ] 5 0 10 ] ] Redax
VAR_ROC Conductivity |0 5 0 10 [i] [ Turhidity
] Temperature
VAR_ROC pH a 5 L] 10 a
VAR_ROC Turbidity a 5 ] 10 a
VAR_LONG_TREND Chloring a 60 ] 60 a
VAR_LONG_TREND Conductivity a 60 a 60 a
VAR_LONG_TREND pH Q 60 L] 60 Q
VAR_LONG_TREND Redox a 60 L] 60 a —Filter detectors by bype
VAR_LONG_TREND Temperature 1] 60 0 60 1] [~ Activate filter by detector types
VAR_LONG_TREND Turbidity a 60 ] 60 a [ NO_ALARM p
WAR_FIXED Chlorine 1 720 15 15 0 ] aR_0OUT_OF_USER_LIMITS
ivi — |1 WAR_OUT_OF_STATSTICAL_LIMITE
VAR_FIXED Conductivity 1 1440 15 15 Q [ WaR_FIXED
VAR_FIXED pH 1 1440 15 15 a [ wAR_LONG_TREMD
WAR_ROC
VAR_FIXED Redox 1 1440 15 15 a S RULE WIOLATION
VAR_FIXED Temperature 1 360 15 15 a [ NO_SIMILARITY
[] BAD_SIMILARITY
VAR_FIXED Turbidity 1 720 15 15 a ] DYNAMIC_CHANGE_RARE
VAR_OUT_OF_STATSTICAL_LIMITS | Chlorine Q 120 15 15 Q [ DYMAMIC_CHANGE_BAD v
VAR_OUT_OF_STATSTICAL_LIMITS | Conductivity a 240 15 15 a I Show only active alerts
VAR_OUT_OF_STATSTICAL_LIMITS pH ) 240 15 15 a

_’ILII— Show learning result

Figure 108: The Detectors window. The button for adding a new detector in marked in red.
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Step IV: Figure 109 shows the Detector Policy Editor Window. Select the Detector type to be
"SPATIAL_LINK_DIF" and then select as the detector key the water quality measurement monitored by
the SM model you wish to connect. The EDS will track all pair model with this station as their target
node, and with this measurement, and will trigger EDS events based on their alarms.

Also make sure the click the "Active" check box indicating the detector is active. See the red rectangle
at the top of Figure 109, and the red arrow marking the check box.

Detector Policy Editor X
Detector type [SPATIAL_LINK_DIF =]
Detector key Conductivy -  Active
Delay before trigger (min) T = Info
Delay after operstionsl change (min) [ [ —] User Low.

= User High........9008
Delay after last event close (min) = Statistical Low...306.56
| High.:772.61
Average. 450.18
Natification policy 0 - Every trigger hd Median. 42400
Base severity ‘Z-MED\UM j S 1308
Block On Rule -
Block Off Rule -
History of changes
Name | Value
Detector performence
TP FP FN NC 0T+IG
Events daterange  |From2020/01/01 00:00:00 to:2020104723 15:18:57
Last calculation 202000213 09:27:31 |
=T
< &

Figure 109:Detector Policy Editor Window

Step V: As a notification policy (marked by the lower rectangular red box) in Figure 109, select "Every
trigger", so the EDS will provide a notification for every alarm raised by the SM.

|D - Every trigger ﬂ

1 - Every hour
2 - Once per day
3 - Never

Step VI: click the approve button to finalize.

ﬁ - Approve selection

- Quit (disregard changes)

———- Calculate detector performance

2

- Calibrate Delay times for alarms
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4.8 Suggested Parameters, Case studies and examples

This section discusses the "off-the-shelf" suggested parameter configuration for SM models, as well as a
variety of examples that are used to better explain the behavior of the spatial model under various
settings. Graphs demonstrating the behavior of different models is used to serve as a yardstick for
assessing the performance of user models

4.8.1 Suggested Parameters
For pair models, we suggest the following parameter configuration:

Flow time estimation:

- Preferably estimate flow times using all available data (unless network operation is substantially
different when looking more than 2 years back).

- At least 2 months of data for typically behaved sensor. More data may be needed for noisy
sensors.

- Split to no more than 15 flow regimes.

- Make sure regimes are 6-7 hours in length, for each regime.

- Set the maximum flow time to be considered to 1200 minutes (and less than 1 day at all times).

- Set the flow time resolution to 10-15 minutes.

- Setthe window size for estimation of flow time to be 60-90 minutes (with 60 minutes for a sensor
with little noise, and a very distinct time-varying signal in the data). For battery powered sensors
—120-150 minutes.

- Set window step size to be 1/3 of window size.

- Filter out measurements constant for more than 1 hour.

Prediction:

- Train using 30 days of data.

- Use a 95% prediction interval, i.e. a; = ay = 0.025

- Setthe delay time to be 1 hour

- Hard-coded as of November 2020: prediction interval will be set to be no less than 10% of
measurement user limits.

- Hard-coded as of November 2020: alarms will not be raised if distance between actual and

predicted is not more than 20% of measurement statistical limits.

- Hard coded as of November 2020: the 5% most recent errors (residuals) will not be used when
estimating the distribution of errors.

- Set the delay time to 30 minutes.

Triplets:
- y=4
- For fork-out triplets, set IsPivot to FALSE.
- a,=ay =0.025
- A delay time of one hour.
- Set M to be the same as in pair models (see description in Section 3.7).
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4.8.2 Case of events detected both by EDS and Spatial Model

We examine a case of a drop in Free Chlrone event identified by both the EDS and the Spatial Model.
Figure 110 shows the drop in Free Chlorine, falling below a value of 0.2 mg/L, as marked by a red cicle.
Figure 111 shows this events, built of several small "drops" in F-CL value was identified by the EDS.
Figure 112 shows this event was also identified by the Spatial Model.

f

Tutidty Chire Condutiy
W 10 0
13 #
1 g
1 m
12 #
10 il
0 )
15 ¥
0
0

0‘0‘ M T T T T T m
NN T GOETE AeUeN JRTES JenDs
\ M a )

Figure 110: An example for a drop in Chlorine Event

) Mindset - Detector [Ver 2.2,14.7) Model Manager Form. Madel nam - o X
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6634 |CLOSED 2020/09/15 09:17:56 | 2020/09/15 09:32.58 | 2020/09/15 15:09:17 NONE

6633 |CLOSED 2020/09/14 22:41:30 | 2020/09/14 22:56:49 | 2020/09/15 09:12:53 NONE
6673 |CLOSED 2020/09/14 11:03:23 | 2020/09/14 11:18:28 | 2020/09/14 21:20:49 NONE
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Figure 111: EDS alarms for the drop in F-CL event showed in Figure 110.
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Spatial Model View - O X

Pains | Trolets | Panel  Aams & Regots |

s ¥ From Date [w20ms/7000000 = [V Limits Violation (V) I~ PoorLimits (PL) ™ Poor Prediction(PP) ™ NO Data (ND) I Triplets Alarms (TA)
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o e ] '
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181 TestNet2 - Chiomne |Chioine | RV PP PL 2020/09/17 10:13:02 | 2020/09/17 10:28:15 | 2020/08/17 10:28:15 | 15 1202009/17 103935
124 TestNet2 L |Redox |Redox |QV PP PL 2020/09/17 10:28:15 | 2020/09/17 10:43:27 | 2020/09/17 11:44:02 | 74 1202070917 115350
185 TestNet2 s Tubidty [ Tubidty | LV PP PL 2020/09/1708:27:48 | 2020/09/17 08:45:58 | 2020/09/17 08:57.08 | 28 | 2020/09/25 174405
181 Testhlet2 | (Chiome |Chiome |RV PP PL 2020/09/17 20:23:03 | 2020/09/17 20:44:13 | 2020/09/17 20:54:16 | 24 12020/03117 20:59:35
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Figure 112: SM alarms for the drop in Chlorine event showed in Figure 110. The relevant rows are the ones with a measurement
of Chlorine and a "TestNet2" cluster identity.
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4.8.3 Case of an early warning

We show an example of the SM resulted in an early detection of an irregular event with increased
conductivity. Figure 113 shows a case of an increased conductivity value reaching 950 uS/cm at 3:00 AM
10" September 2020. This event triggered an EDS alarm. Figure 114 shows an Event was triggered by the
SM, up to 36 hours before, due to a prior increase in conductivity. A look at the increases in conductivity
in Figure HHH shows the increase experienced in Figure 114 is in fact a pending problem, that could have

been identified before.
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Figure 113: An increase in Conductivity identified by the EDS.

D Actual (mics) @ Predicted (micS) O Low Limit (mic§) @ High Limit (mic§)

202010903 16:3819 000007 021308 20200508 114%:31

Figure 114: Detection of irregular Conductivity measurements by the SM, prior to the event in Figure HHH.
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4.8.4 Additional Examples for real events in data

We show examples for additional events detected in data by the SM. Figure 115 shows an example of a
spike in Turbidity detected by the SM. Figure 116 shows an example of a slow increase in conductivity
detected by the SM.

W Actual (NTU) @ Predicted (NTU) @ Low Limit (NTU) B High Limit (NTU)

2020108111 22:45:43 2020!08/1'3 07:49:17 102(708!{4 11:22:39 2010/0”1'6 02:36:07 2020!08/1'7 12:51:44 2020/08/18 22:38:53

Figure 115: An event with a spike in conductivity detected by the SM.

W actual (micS) @ Predicted (micS) @ Low Limit (micS) B High Limit (micS)

mics
&
L

0 T T T T
200825 20:11:29 2020108125 21:02:33 202010825 1:49:39 202008125 22:42:58 202008125 23:401T 202010826 00:33:24

Figure 116: An event with a slow increase in conductivity detected by the SM.
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4.8.5 Comparison of conductivity models

We show a comparison of two SM pair prediction models for conductivity measurements. The
comparison is given in Figure 117. Subfigures A and B in Figure 117 show the actual vs. predicted plot
and histogram for prediction errors, respectively, for the conductivity prediction model showing a good
fit to the data. Subfigures C and D show the same plots of the same type for a conductivity model with a

substantially worse fit to the data.

In subfigure C we see points in the actual vs. predicted line don't match a 45 degree angle. The errors in
subfigure D are substantially more dispersed than in Figure B.
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Figure 117: Comparison of the models for predicting conductivity in two SM pair models. Subfigures A and B show the actual vs.
predicted plot and histrogram of prediction errors for a model showing good fit to the data. Subfigures C and D show the same

charts for a model with worse fit to the data.
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4.8.6 Comparison of Redox models

We show a comparison of two SM pair prediction models for redox measurements. The comparison is
given in Figure 118. Subfigures A and B in Figure 118 show the actual vs. predicted plot and histogram
for prediction errors, respectively, for the redox prediction model showing a good fit to the data.

Subfigures C and D show the same plots of the same type for a redox model with a substantially worse
fit to the data.

We observe points in the actual vs. predicted plot in Subfigure C to be substantially more dispersed than
the points in Subfigure A.
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Figure 118: Comparison of the models for predicting redox in two SM pair models. Subfigures A and B show the actual vs.
predicted plot and histrogram of prediction errors for a model showing good fit to the data. Subfigures C and D show the same
charts for a model with worse fit to the data.
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4.8.7 Comparison of Turbidity models

We show a comparison of two SM pair prediction models for turbidity measurements. The comparison
is given in Figure 119. Subfigures A and B in Figure 119 show the actual vs. predicted plot and histogram
for prediction errors, respectively, for the turbidity prediction model showing a good fit to the data.
Subfigures C and D show the same plots of the same type for a turbidity model with a substantially
worse fit to the data.

In subfigure C we see points in the actual vs. predicted line don't match a 45 degree angle. The errorsin
subfigure D are substantially more dispersed than in Figure B, and the distribution of prediction errors is
not symmetric around zero.
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Figure 119: Comparison of the models for predicting Turbidity in two SM pair models. Subfigures A and B show the actual vs.
predicted plot and histrogram of prediction errors for a model showing good fit to the data. Subfigures C and D show the same
charts for a model with worse fit to the data.
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4.8.8 Examples for poor efficiency of spatial model limits

We show two examples where spatial model limits are inefficient, and are larger than 50% of the range

between user limits. The examples are shown in Figures 120 and 121.

B Actual {mic$)
1100

B Predicted (micS) @ Low Limit (micS) @ High Limit (micS) @ User High Limit (micS) B User Low Limit {micS)

1000 —

8001- —— —————
0 ———

7004

micS

2001

100

0 T T T T
202010824 00:35:31 202010824 03:26:28 2020108/24 05:43:09 2020/08/24 08:44:22 202010824 11:04:38

Figure 120: An example with inefficient Spatial Model limits when monitoring conductivity measurements.
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Figure 121: An example with inefficient Spatial Model limits when monitoring Free-CL measurements.
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4.8.9 Limit time for an event

This example shows the importance of filtering the most recent 5% of prediction errors from the
distribution used for computing the Spatial Model limits in Section 3.5.2. Figure 122 shows an example of
an abnormal increase in pH, marked by the red arrow. The abnormal pH measurements continue for
more than a day, with values returning to normal only at the timepoint indicated by the purple arrow.
However, the abnormal prediction errors become a substantial portion of the training set already at the
time point marked by the green arrow. Hence, the difference between the abnormal value of pH, and the
current source value stops being irregular, and SM limits show the current value of target station pH is
not abnormal. In order to avoid a case where prediction errors from a water quality event affect the
detection thresholds, the most recent 5% of prediction errors are removed from the data.

W Actual (SU) M Predicted (SU) @ Low Limit (SU)  ® High Limit (SU)
155

su

7154 W e - gt
7404

7054

700 T T . r
2020108109 10:43:47 2020008110 00=52:00 2020/08/10 13:49:10 2020108111 06:04:06 202010811 20:10:39 2020108112 10:34:29

Figure 122: Example of why the most recent prediction errors should be not be used for setting the SM event limits. An
abnormally high value of pH is observed starting from the time point indicated by the red arrow until the timepoint indicated by
the purple arrow. Target station measurements are not declared as abnormal starting from the time point marked by the green
arrow, since large prediction errors have entered the empirical distribution used for setting SM event limits.
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4.9 Triplet model — definition

The triplets tab in the Spatial Model main window (Figure 123) lists all defined triplet models. The values

listed for each mode are:

o The triplet ID (unique value)

e The Cluster identity for each triplet

e Triplet type — One of three values: triplet (line)/ Fork out/ Fork in
e Triplet status (Run/ Stop).

e Reg- The network regimes in which the model is active (user's choice, as in Section 4.3)

e The three stations featured in the triplet — Denoted by Station A/B/C.

e The model time for each triplet model —the most recent timestamp, by sensor clocks, that can be
monitored by the triplet model. See Section 3.6 for description of the time adjustments between

sensor times, used in order to determine this field.
e Indication if a triplet alarm exists

e The Last predicted timestamp. — the last time (by server clock) a triplet was monitored
o The triplet description — a descriptive string usually listing the three stations in the triplets, along

with the monitored measurement name.

Cluster and station filtration options (using the toolbar) described in Section 4.1 are also applied to this

screen.

Spatial Model View

Pars  Trlts | Panel | Aarms |

el S |

Triple Station A Station 8 g 0.0 i
MdSouth | Triplet RUN - Station A Stmizn @ || Stwion € | 2020/06/27 058 0.00 0.00 0001/01/01 00:00:00

| Conductiviy

357 a1 B I«

358 |MdSouth | Triplet RUN - Station & Station @ || Station € | 2020/06/27 09:54:21 | 0.97 0.00 0.00 0001/01/01 00:00:00 a L] I c IpH

359 | MdSouth | Triplet RUN - Suaian A Staton 8 || Swvon €| 2020/06/27 095421 | 085 000 0.00 0001/01/010000:00f =~ | e I ¢ |Redmx
360  |MidSouth | Triplet RUN - Station A Station @ || Staton € | 2020406727 09:54:21 |0.97 0.00 0.00 0001/01/010000:00f ~ | e I € | Turbidty

I™ Filter By Cluster rFllh'ByMumlﬂn:i ¥ Filter By Station A I Filter By Station B I™ Flter By Station C Ui e ey o
[Testhienn [do_spa =l [ K| I K| [¥ Show only models in RUN status
Total Objects:743 | Learn:0 | Predict:259 | Pairs:280 | Triplets:463 | [101]Homr_SPA | Hom Some models are missing. See log file I 2020/06/27 12:06:04 ]

Figure 123: The triplets tab
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New triplet models may be defined using the Spatial Model Editor. Figure 124 shows the 'Triplets Setup
tab in the model editor. To define a triplet model :

1. select the type of triplet, as shown in Figure 124. Triplet types may be either: fork-in/ fork-out
or triplet (line).
2. Select the model name ("Spa Link Description").
3. Select the two pairs for the triplet model.
For a line/triplet model — Pair 1 should be the upstream pair, and pair 2 should be the
downstream pair. The two pairs should have a shared node — the target node for pair 1
should be the source node for pair 2.

For a fork out model, the two pairs should share the source node

For a fork in model, the two pairs should share the target node.
4. Select the additional parameters, a;, ay, ¥, isPivot and the critical value (given by percentile)
for calculating the alarm threshold. See Section 3.7 in Unit B for a complete description of the
parameters.

Spatial Model Editor >

SPA Link descripion [Shvi_SPA| KMN1B_SPA | KMN_SPA | Chiorine Link Type
[T =]
s P
- I =
') 00423

Bosic setup  Trpkets setup | Prediction Resuts | Log data | Advanced | Leam Chart |

Pair 1 ’ _._] Pressure_Reducer->Eattery_Monitor

L] Battery_Monitor->Reservor_In

@ @8 &
7

[8] Alpha lower (for tnplet value) [ 0.05 E (0.05)
e— Alpha upper (for triplet value) 005 32 (0.05)
G Triplet Critical value for monstor (T) 095 -S (0.95)
E Gamma [ 400 5: (4.0) (Defines correlation between stations)

™ Is pivet Defines in case of fork out if object is aligned by source (checked) or target (un checked)

Figure 124: Defining a triplet model using the Spatial Model Editor window.
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Link Type

=
1- Pair
2 - Fork Out
3-Fork In
4 - Triplet

Figure 125: Selecting the type of triplet model using the 'Link Type' selection box

The charts window for a triplet shows the 'Triplets Limits graph'. This graph shows:

e The triplet's T value
e The T value averaged across the last 3 timestamps, in 10 minute increments (moving average)

o The critical T value, as computed by the algorithm described in Section 3.7.

SPA Triplet Charts - [m]
SPA Link description E Station A| Station © | Statian € | Canducthity ITW’ Limits
Statate [2020/06/1312085¢ Enddate  |2020/06/27120854 —
~ Line | Vioiation |
Neiel W] MCiealT I Showrmarkers

12

o J‘h! iy,

mo'ﬁz 153628 006723 (80745 200524 06:01:32 TS 1A BN 200627 020327

Figure 126: Triplets limits chart for a triplet model.
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4.10 Running simulation scenarios

The simulation screen allows the user to run 'what-if' scenarios and analyze the models' sensitivity to
possible events in the data. The simulation screen is shown on Figure 127 and is accessible through the
main Spatial Model screen toolbar, see details in Section 4.1. The user selects (highlights) a Pair model in

the Pairs tab, and click the "simulations" icon (E‘) in the main toolbar.

In the next few pages, and using Figures 128-130, we will go over the different fields and options
available in the simulations menu. See the next page for the detailed description.

G 55 | e |

Object Id 291 Triolte:
biec 426 7L i Ti TRedox
Object Name | 1 Redox 479 [FO] | | | Redox
718 [FI) | I | Redox
Station A [ Sensor Station A [RedoxjmV]
=
SwationB [ Sensor Station B |RedoximV] %=
Low valid 50 High valid 1200
Simulation control

Target station actual 730.000 Targetstation predicted | 729.310

Target station actual simulated value

!
R 732.640  Targetstation timestamp | 2020/07/08 20:09:59
Poor limits threshold (%) 2 = Targetstation
i Time stamp for simulation
Poor prediction threshold (%) 2 = P
" Now
Triplet T value threshold 400 =
% Historical W
I Spatial Limits violation [732.64>707 42 and 732 64<763.00 Target Spatial Limits  [707.42 - 763.00
I Spatial Limits Poor (%) [92.0% > 37.22% - (763.00 - 707.42) / (859.85 - 710.54) Target Statistical Limits [71054-85985
Spatial Model Poor Prediction (%)  [0.82 > 0.00 = (729.31- 732.64)/732.64
H No Data
. RelotedTriplets/Forks alarm - - - Simulation number ’ 2
Event documenlation directory
[csPa_qay

BT Bl

Figure 127: The simulations screen
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The upper left set of fields in the Simulations screen, marked by the left red rectangle in Figure 128,
shows a description of the current selected Pair model for simulation. The different fields show the
Object ID (unique identifier for each object), the object name, and the two stations lined to the object —
the source and the target station. The type of measurement (and measurement units) for the source
and target stations is depicted as well. The Low/High valid fields show the range of valid measurements
for the two stations, as configured by the user in the Model Editor window, as in Section 4.3.

The selection pane and selection buttons on the upper right side of the Simulations screen, marked by
the right red rectangle in Figure 128, list all triplet models the currently viewed pair model is part of.
When simulating events for a pair model, events triggered by triplet models including the simulated pair
will also be listed, if the corresponding triplet models are selected in the "Affected Triplets" selection
pane.

On the next page, we discuss how to configure the simulated events.

Control | Log | Runs |

Object Id 291 d Trioktes
i 426 (1) m I T Redox
Object Name | I Redox 479 [FO) | | | Redox
718 [FI) | I | Redox
Station A [ Sensor Station A [RedoximV]
> X=
Station B | Sensor Station B [RedoximV] %=
Low valid 50 High valid 1200

Simulation control

Target station actual 730.000 Targetstation predicted | 729.310

Target station actual simulated value

e i IW Target station timestamp | 2020/07/08 20:09:59

Poor limits threshold (%) [ = Targetstation

Poor predictionthreshold (%) | &2 =] [
Triplet T value threshold o o ot

@ Historical [2020/06/30 21:22:37 -
I Spatial Limits violation [732.:645707.42 and 732.64<763.00 Target Spatial Limits ~ [70742-76300
I Spatial Limits Poor (%) [92.0% > 37.22% = (763.00- 707.42) / (859.85 - 710.54) Target Statistical Limits [71054-85985
Spatial Model Poor Prediction (%)  [0.82> 0.0 = (729.31- 732 64)/732.64
Event documentation directory

[CrsPAGAY

Figure 128: Object identification fields and list of affected triplets in the Simulations screen.
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Figure 129 highlights the different simulation controls, along with additional fields informing the user on
the models performance.
The controls and available to the user for configuring the simulated event are:
The fields shown to the user are:
e |nfo field: The current timestamp measured by the target station.
e Control field: The target station timestamp for simulation — either for the current time or for a
historic timestamp.
e |nfo field: The actual value measured in the target station, for the timestamp selected for
simulation.
e Control field: The value to be simulated for the target station at the chosen timestamp.
e The predicted value for the target station, computed after running the simulation (see remark
below).
e Controls for setting the thresholds for the Poor limits, Poor prediction and Triplet alarms, as
defined at the start of Unit C.

The user may run the simulation by setting the above control fields and clicking the "simulate" button,

shown as a lever ([&]‘) at the bottom of Figure 129.

Control |Log | Runs |

Object Id 291 Tripktes
e 42611 T T T Redon
Object Name | | Redox 479 [FO] | | | Redox
718 [FI) | | | Redox
Station A [ Sensor Station A [RedoxjmV]
_ (G
Station B [ Sensor Station B [RedoximV] %=
Low valid 50 High valid 1200

IMulation control

Target station actual 730.000 Targetstation predicted | 729.310

Target station actual simulated value

) )I . 732.640  Targetstation timestamp | 2020/07/08 20:09:59

Poor limits threshold (%) [[2 = Targetstation

Poorpredictionthreshold (%) | &2 =] Time stamp for simulation
Triplet T value threshold [a00 = e

@ Historical  [2020/06/30 21:22:37 =
I Spatial Limits violation [732.64>707.42 and 732.64<763.00 Target Spatial Limits  [707.42- 763.00
I Spatial Limits Poor (%) [92.0% > 37.22% = (763.00- 707.42) / (859.85 - 710.54) Target Statistical Limits [71054-85985
Spatial Model Poor Prediction (%)  [0.82> 0.0 = (729.31- 732.64)/732.64

J o
Event documentation directory

[CrsPAGAY

EELE &8s

Figure 129: Simulation control fields and alarm thresholds.
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After running the simulated event, the fields highlighted by a red rectangle at the bottom of Figure 130
will show the simulated limits as well as alarm indicators. The following outputs are available:

e Spatial limits and statistical limits for the target measurement at the target node.

e A field describing the simulated measurement, with respect to the computed spatial limits. If the
spatial limits are violated, the label will be marked in red.

o Afield showing the ratio between the spatial limits range and the statistical limits range (along
with the computation method), and stating if this ratio is below the "Spatial Limits Poor" limit. If
the ratio is above the alarm limit, an alarm will be triggered and the label will turn red.

o Afield showing the ratio between the prediction error and the actual measurement. If this ratio
is above the "Spatial Model Poor Prediction" alarm threshold, an alarm will be triggered, and the
field name will turn red.

o Alabel for a no data alarm- if no data was available for the source station.

o Alabel for a triplets alarm — if one of the monitored triplet models (selected in the Affected
Triplets pane) raised in alarm.

e Colored fields for no alarm (OK, in green), a failed prediction or a triggered alarm.

e A counter for the number of simulations run.

The log file for the current simulation can be viewed under the "Log" tab. Previous simulation runs and
their results can be viewed under the "Runs" tab.
Sections 4.10.1-4.10.5 exemplify possible outputs generated by simulated events.

Control |Log | Runs |

psr d Triol
Qriect i SR e Ti T TRedox
Object Name | | Redox 479 [FO) | | | Redox
718 [F1) I | | Redox
Station A l Sensor Station A ‘RedoxImV]
=
Station B [ Sensor Station B |RedoximV] %=
Low valid ,T High valid 1200
Simulation control
Target station actual 730.000 Targetstation predicted | 729.310
Target station actual simulated value
! = =
N 732.640  Targetstation timestamp | 2020/07/08 20:09:59
Poor limits threshold (%) 2 = Targetstation
S Time stamp for simulation
Poor prediction threshold (%) 82 = P
C Now
Triplet T value threshold 400
(¢ Historical (2020/06/30 21:22:37 ¥
= ==
I Spatial Limits violation [732.64>707.42 and 732 64<763.00 Target Spatial Limits ~ [707.42-763.00
! Spatial Limits Poor (%) [92.0% > 37.22% = (763.00 - 707.42) / (859.85 - 710.54) Target Statistical Limits [71054-85985
Spatial Model Poor Prediction (%) ID 82> 0.00 = (729.31- 732.64)/732.64
No Data
RelatedTriplets/Forks alarm - - _ Simulation number 2
Event documentation directory

[CrsPAGAY

BREE B/

Figure 130: Indicators for simulation results
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x| reset

- export def

@l - to html
@- printscreen

4.10.1 Simulating a No Data Alarm

e In case no data is available for the source station, the following indicator will appear:

HI No Data

4.10.2 Simulating a Spatial Limits Poor Alarm
e Consider the case the poor limits alarm is set to 32%.

Poor limits threshold (%) 2 =

e For our simulation, the generated spatial and statistical limits are the following:

Target Spatial Limits ~ [707.42 - 763.00

Target Statistical Limits |710.54 - 859.85

e The ratio between the two ranges is 37.22% (see computation below). Hence, an alarm is
triggered:

I Spatial Limits Poor (%) l32.07". < 37.22% = (763.00 - 707 42) / (859.85 - 710.54)
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4.10.3 Simulating a Spatial Limits Poor Prediction Alarm
e Consider a simulated setting with the following actual and predicted values:

Simulation control

Target station actual 730.000 Targetstation predicted | 729.310

Target station actual simulated value
!

e 728500  Targetstation timestamp | 2020/07/08 20:09:59

e We set the poor prediction error threshold to 0 %.
Poor prediction threshold (%) 0

e The relative error, given by (729.31 — 728.50)/728.50, is larger than zero (by a small amount,
but still). Hence, an alarm is triggered:

Spatial Model Poor Prediction (%) [0'00 <0.00 = (729.31- 728.50)/728.50

4.10.4 Simulating a Spatial Limit Violation Alarm

e Consider a simulated setting with the following actual and predicted values, and the following
spatial limits:

Simulation control

Target station actual 730.000 Targetstation predicted | 729.310
Target station actual simulated value
i )I T 691.240  Targetstation timestamp | 2020/07/08 20:09:59

Target Spatial Limits |707‘42 - 763.00

Target Statistical Limits [710.54 - 859.85

e The simulated "actual" measurement is found outside of the spatial limits, and therefore a
"Spatial Limits violation" alarm is raised:

I . Spatial Limits violation I631_24c?{]?_42 or 691.24>763.00

4.10.5 Simulating a Related Triplets Forks Alarms

e In case alarms will be raised by any of the monitored Triplet models, the following field will turn
red:

RelatedTriplets/Forks alarm
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4.11 Viewing Spatial Model Predictions and Alarms in the Thin Client

This section discusses how the SM, its model prediction and alarms can be viewed in the EDS thin client,

a desktop based application that can be used for monitoring the water network, without accessing the
EDS server software directly.

Log-in: Start the EDS thin client using the desktop icon. Figure 131 shows the log-in screen. Type in the
server name, username and password as supplied by Decision Makers LTD. For the remote option, click

'ves', if you are connecting to a remote server, and false otherwise. Click log-in.
Login

’ Decision Makers Ltd
J 0 Mindset Detector
Remote Client Login

Version 1.1.3.2 (Beta)

Server Name | LI

Remote - |

Username I

Password |

Login Exit

Figure 131: EDS thin client log-in screen.

The main screen and map: Figure 132 shows the main screen for the Thin Client. The map at the center
of the screen shows the different station locations, with icons showing their type and status. A list of
stations on the left shows the current nodes in the network, their status, alarms and description. The
last timestamp monitored appears as well.

® Octector Chent Ver 1132 (Beta)
Fie Repots Refresh  LogOut  Info

Mep
Sites lgt [oearch by sddress or coordnates Go

Map  Satellite

¥ Rafresh Models
Fight click any model 1o apen 3 menu
Loat TemeSiamo | Asem Status | Descrpion

2000/08/24 145000 |_
202008724 145900 |
2020/05/0215:3600 |
2020/05/03.09.4800 |
| 202007723 083190

|20/ 235458

2020/08/24 153441 |

2020/08/24 14,4743
2020/08/26 14:3715 | _

2000/00/24 143558 |_

2000824142720 _
2000/0824 142325

200705/
202008724 16220
2020/08/24 150440 | _

Events
I™ Disglay Pending Detectoes

Hom £ Tegger
Tpekey " [Tme Trog, Descigton

Figure 132:EDS thin client main screen and map.
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Pressing the legend icon will show a window as in Figure 144. Positioning the mouse pointer will show a
tool tip text. See Figure description for a description of icons.

D Legend X

0o

Figure 133:Legend for EDS thing client map icon. Object types, from top to button: General station, reservoir in, reservoir out,
pump, battery-powered station, pressure reducer, general water exit from network. States are color coded, from left to right:
status OK, High severity alarm, medium severity alarm, low severity alarm, no communication and model disabled (not
monitored).
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Site data: Clicking on a site will present it's current data under the "Selected site data" panel.

—Selected site data

Field | Units Data

. 8/24/2020 2:39:00 PM

pH * 7938

ORP . 304 693

Cond : 295,996

Turb . 0

FPressure | © 2851

DisD2 . 3065

Temp . 15.757

Figure 134: EDS thin client "selected site data" panel

Site events: Clicking on a site will present it's current events under the "events" panel.

[~ Events

I Display Pending Detectors

Start Time. Trigger Time. Description
\R_OUT_OF_USER_LIMITS 2020/08/21 21:40:00 | 2020/08/21 22:10:00 | Varizble ORP is out of user limits (350:500) Trigger value:301.11
VAR_OUT_OF_USER_LIMITS DisO2 | 2020/08/21 21:40:00 | 2020/08/21 22:10:00 | Variable DisO2is out of user limits (7:12) Trigger value:6.96
DYNAMIC_CHANGE_RARE - 2020/08/21 23:30:00 | 0001/01/01 00:00.00 | Rare process noise for :30. Minutes, with value of :0.5353 Var changes:pH:0.00 [Cond:5.89 [Turb:0.00 |

VAR_OUT_OF_STATSTICAL_LIMITS | Temp 2020/08/22 20:21:00 | 2020/08/22 23:00:00 | Variable Temp is out of statistical limits (5.361;16.377) Trigger value 16.407

Figure 135: EDS thin client "selected site events" panel

File Menu: Clicking on the menu titled "file" will show the options depicted in Figure HHH.

File | Reports Refresh  Log Oh

Measurments  Ctrl+ b
Alarms Center Ctrl+4
Spatial Model  Ctrl+5

Figure 136: EDS thin client file menu

Alarms Center: By Selecting the alarms center, a window as in Figure 137 will appear, showing all available
alarms.

| Model ‘chefity AlarmType AlarmKey StartTime TriggerTime \ Description

Figure 137: EDS thin client Alarms Center.
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Clicking on the "Spatial model" item under the "File" menu will show the "Spatial Model View" window,
discussed in the next subsection.

4.11.1 The Spatial Model View in the EDS Thin Client

This section covers the Spatial Model view in the EDS thin client. This view is accessible through the
"Spatial Model" option, under the "File" menu in the EDS thin client. Figure 138 shows the Spatial Model
View, with it's tab, selection drop down boxes and toolbar. In essence the Spatial Model View is a simpler
version of the Spatial Model manager presented in Section 4.1. The main change between the manager
and viewer is that models and definitions cannot be changed from the viewer.

The pairs tab is shown in Figure 138, with the pair descriptive field and state indicators shown in Figure
76 in Section 4.1

Spatial Model View - o X

Pors | Toplets | Panel | Mams & Repots |

8/24/2020 44500 PM 7781 7/22/2020 11:45:36 PM

220
s Par  |RUN moL | Criome 8242020 40812PM 0515 081 0sss l0ss 7/22/2020 114536 PM [0 False
1 P |RUN NTU | Tubdy 220200 40812P4 02% o7 ous 03 7224536 PM | [ Fatse
15 P |RUN NTU | Tundy 220202025728 PM 0417 o7 053t om 72272000 114536 Pm | %0 Tre
16 P RUN U U 8/202024435PM 0365 077 l0457 3 7222020 11:4537PM | I3 e
1 P |RUN NTU Tty |e2u220408 1294 0299 lo7s loass =) 727200 114537PM | ™ Faise
2 P |RUN U pH lvaun 408 120M| 746 788 1756 1755 2SN ™ I
2 P RUN o |Redox (2202020408 127M 82664 a6 0 =) [ nasIen| ™ ™
n [P RN INTU [Tubdy  |s2e202025728PM 047 07% 0561 Jom 722200 114537PM %0 Folse
3 P [RUN su Jon |vavanzsrnem 73 75 174 1% s [0 [Fase
% [Pae |RUN oL Clome |e2v2020257287M 0505 055 =3 Jos2 v nasIen| %0 ™
7 [Par |RUN WV |Red |8/20/2020 25728 PM | 784.109 T30 Ts06609 I3 ram v i) Faise
= [P [RUN mes oo |a2va20 4150074 536852 5% e |68 |772272020 4538 Pm | =) =
23 Par RUN NTU v .szuﬁpu 0365 0.767 .0497 053 .7/m“‘53-3|7“‘ 85 .‘M
) P |RUN U oM 2202020 41500PM 78 813 791 sm 77227200 114538 PM 20 Fatse
n P |RUN ot o (8202020 41500PM | 0.77 hz lose T 72272020 114538 PM | 20 Tne
2 Par  |RUN NTU | Tubdey lae202024435PM 0365 0767 l04s7 loss 72272020 114538 PM 285 ™
55 Par RUN su pH B24/2020407 14PN 747 767 >757 755 '7/22/2011 ||I5HJP“‘ ’77D Faise
% P |RUN U |pH |8202020257287M | 732 752 e 73% 772212020 114540PM | 70 Faise
B [P TRun ml|Ciowe |se22020357m 035 o7 [oas7 |ose |12 s a1Pu | |ass [Te

¥ Filter By Cluster ™ Filter By Measurement ™ Filter By Staton A ™ Filter By Saton B ™ Filter By Station C V Update screen every 5 minutes
|Bet_Haken ~l

0B EY

=l | =l [ =l | =l ¥ Show orly models in RUN stats

2020/08/24 165546

Figure 138: Pairs tab in Spatial Model Viewer in the

The Spatial Model Viewer toolbar contains the following options:

g - See model definitions

‘E - Refresh view
‘M— See charts
I - Export table to file

|§ - See selected SM object on map
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Focus on object in map: By clicking on an SM object and then clicking on the "see select SM object on
map icon" (|§), the map in the EDS thin client will focus on the selected object. See Figure 139 for an
example of a map focused on an object (A pair object with ID 45).

Map
[search by address or coordinates.

Figure 139: An example for a map focused on an object after clicking on the "map focus" icon.

Reports and alarms: Current alarms, historical alarms and reports can be viewed through the Alarms and
reports panel, shown in Figure 140. This panel is similar to the Alarms and Reports panel shown on Figure

81 in Section 4.1.

Spatial Model View

Pars | Trplets | Panel |7
I Fihter limits violation I Filtes Foor Limits [ Filter poor prediction I™ Filter OBJ | 1 3:

@ Cument Alzrms I™ FromDate 20200926 223827 —=
™ Filter NO dats T Filtes Triplets Alarms:

 Historic Alarms I™ To Dt [z zEs =

" Aggregate Alamm Reparis |1~ Ctiects corfiguration parameters =]

Cumert & Historical | Agoregate |

[ ohnal_naanm Aem_Descrption TSt Tene | Tagger Time EndTme | Age Lo Upddte | Note
20200526 01:3%:08| 20200926 21.2729 - 20200526 21:28:31

12 | 20200926 03:14:33 | 20200926 214319 - 2200925 223474

16 20200826 03:36:05 | 20200926 223317 |- 20200826 223414

a6 | | 20200512 224328 | 20200813 202733 - 20200815 140931

220 | I -Zﬂmi513:ﬂ1:‘5.m26 14:17:55 - -202009-25 ‘4:‘9:55-

. | |2020-05-26 08:36:08 | 202009.26 21:56:34 |- (20200826 21:57:32 |

¥ Update screen every 5 minutes

I™ Filter By Station B ™ Filter By Station C
= [ = [ = ¥ Show only models in RUN status

I Filter By Measurement I Filter By Station A

= [

I™ Filter By Cluster

BBy

2020-09-26 22:38:31

Figure 140:Alarms and reports panel in the EDS thin client
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Panel with key indicators: A panel showing the key indicators for each pair is available as well, see Figure

Spatial Model View E0 .
Pars | Trplets Panel | Alams & Reports |
Obectid Descrpton - — = = —
3 [ Name [ otoy |22 Name ¥ TRedox  |[27 Name [ [Redox  |[30 Name [BH ToH
5 Model ime [20200526 212831 Model ime [2020.05.26 184635 Model time  [20200926 212831 Model time  [2020-0926 025400
9 Modelstats [RON Model status [RUN Modelstatus [RON Model status [RUN
"
= Currentvalve [ 7123 Curentvalve [ 732 Current value EiE) Currentvale [ 816
1 Predicied value| 0753 IIII Predicted value| 731572 IIII Predicted value| 709,706 IIII Predicted value| 815 IIII
19
= Lag [ 690 Lag [ %0 Lag [ 890 Lag [ 500
2 Low High  %Rang Low High  %Rang Low High  %Rang Low High  %Rang
%
= Userimis | 001 00 00%  |Userbimts [55000  [100000 | 100% |Usermis [55000  [100000 [ 100% |Userbimits | 650 850 100%
% Shifi 015 059 [seB4z4s Shﬁ'i 62126 85079 [5322888 5"'—‘- 63406 85149 [a831777 Shlifl 734 836 51%
27 Spathimits 064 T [a747a7s |Seetless  TeoneT [Seigr 0% |Sestlims ooy 7221 0% | Seatlims 305 825 [099%5%3
28
» Lastupdate  [20200926 92831 PM Lestupdste  [20200926 64635 PM Lastupdste (20200926 92831 P Lestupdste (20200926 25400 AM
3
2
37
38
39
I
Al b2
I™ Filter By Cluster ™ Filter By Measurement I Filter By Station A ™ Filter By Station B I™ Filter By Station C 7 Upouk scroen ovory 5 s

| [ | [ | [ | [ K| ¥ Show only models in RUN status
08k BEY

2020-09-26 22:38:06

Figure 141: A panel showing key indicators for each pair model, in the EDS thin client.

Graphs: Time series graph, error histograms, Source vs Target and Actual vs. Predicted graphs are

available for each pair model, by pressing the charts button (M). Figure 132 shows an example for an
Actual vs. Predicted graph for a Pair model in the EDS thin client. Figures 143 and 144 show a histogram
for spatial model event lengths, and a time series comparing predictions, measurements, and alarms

thresho

SPA Pairs Charts

SPA Link description

Ids, respectively.

I ToH

[Actual Vs Predicted

|

Voiel [ — vaide T O —
Startdate [2020/09/192239:46 = Enddate  |2020/09/26 223946 —
Actual () s Predicted (y)for Spatial Link tne Ao ->Pr | Vilation | Hetogam |
I Force Xand Y scale (not auto scale)
% (5 |
1% Min
184 9 ¢ [~ Show 45 degree line
e 0 g (set max and min field to show 45 line)
0
T
) 2 § 6 (]
%m ¢ §§§ §°§§2
3 0 9006 o
7%
! TN
T4 g ¢ 8 g
m $
Y XK $
m
9
18 §
I EE I EE T E R R
| Actual (S )

Figure 142: An example for a graph comparing actual and predicted value for a Spatial Model pair model in the EDS thin client.
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SPA Pairs Charts - o X

SPA Link description i ToR Spatial lmils violations ~|
Model 8 Variable  [pH Units su
Start date [2020/06/19 223946 — Enddate  |202009/26 223946 —
Frequency and Length of Violation of Spatial Limits Une | Ao <> Pr Violation | Hstogram |
40
s I Force Limits
SPA Limits change (%)
36 |
34 Delay time (samples)
324
304
. I Predicted > State High
™ Predicted < State Low
264
.g 244
£ This chart type enables to simulate
g 22 amount of viclation with difierent
g 20 spatial limits and and delay

14 31 59 75 103 119 148 165 193 209 237 254 284 312 343 373 400 417 433 459 475 520 595 669 743 818
Length of Event (Minutes)

‘Relﬂ‘ng..m

Figure 143: An example for a histogram of spatial model event lengths, for a Spatial Model pair model in the EDS thin client.

SPA Pairs Charts - o x
SPALink descripion [} TpH Spatial Limits |
Model Varicble  [pH Units sU
Startdate [2020/091922391 — Enddste  |202008/26223811 —
-~ line | Ac <> Pr | Vioation | Histogram |
A Nichal(SU) Wpredited(SU)  Hlow Limit(SU) B High L SU) Y ——
L Max [55
m Min [6
(& y
|~ e I~ Show user limit
i2 B PV p—— g S S b User High [8500
i o User Low [E500
L1}
™ Show statlimits
18 SwtHigh [B102
378 (o StatLow [7246
1%
L I~ Showmarkers
15
14 - - e
13 pp— o~ W . o - . el
12
A - - - T -
NAN19 24813 209 07:38:42 00922 16:55:13 20200924 02:04:49 AN 114712 ANN-2621278

Ready.

Figure 144: An example a time series graph comparing predictions, measurements, and alarms thresholds, for a Spatial Model
pair model in the EDS thin client.
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4.12 Generating reports
This section discusses how aggregate reports can be generated for historical alarms.

Figure 145 shows the "Alarms & Reports" tab in the Spatial Model Viewer. In order to view
aggregate level reports, select aggregate alarm reports (Step | in Figure 145), select the report type
(Step Il in Figure 145), and click the refresh button (Step Il in Figure 145).

Spatial Model View — ”
Pars | Trolets | Panel  #lams & Repots |
© Cunrent Alarma ¥ From Date 2020/09/24 130414 —— = - = - -
O e Al [¥ To Date 2020/09/26 13:04:14 ==
I~ Filter OBJ
& Aggregate Marm Reports [1" - Objects configuration parameters = I ot

Cument & Histoncal  Aggregate |

Spatial Model Report No. 1 .
2020109126 13:07:49

Objects Parameters Configuration

Total Rows : 258

Id SPAObjectType StationAName stationBName StationCName SPACluster SPAM 1 | SPAM 2 |SPAM 3 |SPA_Regim DelayTime
49 Pair MidSouth  CL CL -1 620
50 Par MidSouth  TU TU -1 495
51 Pair MidSouth  pH pH -1 620
84 Pair MidSouth  Chlorine Chlorine -1 690
85 Pair MidSouth  pH PH -1 690
86 Pair MidSouth  Redox Redox -1 690
87 Par MidSouth  Turbidity Turbidity -1 690
92 Pair MidSouth  Chlorine Chlorine -1 120
93 Pair MidSouth  pH pH -1 120
94 Pair - - MidSouth  Redox Redox -1 120 e

W Filter By Cluster

MidSouth =

o ®0E e sal

Totsl Objects:738 | Learn:1 | Predict:407 | Pairs:262 | Triplets:476 | [140]Tel_E|_Full | Dano_SPA | pH(Learn)

™ Filter By Measurement ™ Filter By Station A ™ Filter By Station B ™ Filter By Station C

=l I =l [ =l

¥ Update screen every 5 minutes

¥ Show enly models in RUN status

& |

Some models are missing. See log file 2020/09/26 13:07:59 Scan (sec): 000 .

Figure 145: Selection of aggregate alarm reports and report type. Steps for selecting aggregate reports are numbered on the
figure.
4.12.1 Report Types
Report No. 1 lists all SM objects, along with their types, stations, measurements, cluster identities,

configured network regimes and Delay time for alarms. An example for the report is found in Figure
HHH.

For the next reports, an example of the report follows after the report description.

Report No. 2 lists the times and dates each model performed flow time learning and testing for the
measurements at the monitored end nodes.

Spatial Model Report No. 2
2020/08/08 22:34:47

Learning and Validation Dates

Id SPADescription LastLearningTimestamp LastTestingTimestamp
2 2020/08/06 18:37:09 | 2020/08/06 18:52:25
3 2020/08/06 18:37:09 | 2020/08/06 18:52:25
5 2020/08/06 18:39:14 | 2020/08/06 18:54:34
9

14
15
16
19
20

21

2020/08/06 18:37:09

2020/08/06 18:37:09

2020/08/06 18:37:09

2020/08/06 18:37:09 |

2020/08/07 00:40:30
2020/08/07 00:40:30
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Report No. 3 lists the number of alarms of each type, across the system, with the number of open
and closed events, and the average time span of an event in minutes.

Spatial Model Report No. 3

2020/08/08 22:35:42

Total count of SPA Events
Time Period: 2020/08/01 10:41:15 - 2020/08/08 10:41:15

Limits Violation Poor Prediction Poor SPA Limits No Data Triplet_T_Vlaue

Closed Events 409 782 683 241 0
Open Events 40 9 104 36 0
Avg Event Timespan 41 77 108 56

Total Events 449 878 787 277 0

Report No. 4 lists the total number of events of each type, for each pair in the system.

Spatial Model Report No. 4
2020/08/08 22:36:31
Total count of SPA Events for Pairs

Time Period: 2020/08/01 10:41:15 - 2020/08/08 10:41:15

StationA StationB LimitsViolation PoorPrediction PoorSPALimits NoData
2 1 4 1
9 14 12 4
15 15 6 0
4 8 6 8
6 15 12 8
17 42 34 7
15 37 31 19
5 8 7 0
9 12 12 0

Report No. 5 lists the total number of events, by type, for each cluster of stations in the network.

Spatial Model Report No. §
2020/09/26 13:14:07
Total count of SPA Events for Cluster

Time Period: 2020/09/24 13:04:14 - 2020/09/26 13:04:14

SPACluster LimitsViolation PoorPrediction PoorSPALimits NoData
1 7 6 3 0

MidSouth |65 65 65 1

TestlNet] 10 8 6 0

TestNet2 24 24 24 0
MidCenter |53 15 13 0

MidNorth 105 64 54 12

Total LimitsViolation Total PoorPrediction Total PoorSPALimits Total NoData
264 182 165 13
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Report No. 6 shows a cross-tabulation for the number of events by event type and measurement

type.

Spatial Model Report No. 6

2020/08/08 22:41:13

Total count of SPA Events for Measurment

Time Period: 2020/08/01 10:41:15 - 2020/08/08 10:41:15

Measurment LimitsViolation PoorPrediction PoorSPALimits NoData

Chlorine 19 79
CL 3 5
pH 155 179
Redox 50 62
TU 37 99
Turbidity 114 273

95
10
70
30
98
269

31
0
87

3
6
58

total_LimitsViolation total_PoorPrediction total PoorSPALimits total NoData

378 697

572

219

Report No. 7 shows a cross-tabulation of the number of alarms, by alarm type and site type
(reservoir in, reservoir out, Battery Monitor, or Pressure reducer).

Spatial Model Report No. 7

2020/08/08 22:43:03

Total count of SPA Events for Site Type

Time Period: 2020/08/01 10:41:15 - 2020/08/08 10:41:15

SiteType LimitsViolation PoorPrediction PoorSPALimits NoData

Reservoir_In 217 404
Reservoir_Out 65 131
Battery_Monitor 98 212
Pressure_Reducer 29 35

336 140
126 17
203 23
18 61

total_LimitsViolation total_PoorPrediction total PoorSPALimits total_NoData

409 782
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Report No. 8 lists the total number of events by event type (see legend below), and Site ID.

Spatial Model Report No. 8

Total count of SPA Events for Site Type

Time Period: 2020/09/24 13:04:14 - 2020/09/26 13:04:14

Legend

A LmitsViolation = 1

B PoorPrediction = 1

C PoorSPALmits = 1

D No Data=1

E Triplet_T Vale=1

F (LimitsViolation + Triplet_T_Value + PoorPrediction + PoorSPALimits + NoData) >= 2

Id A B C D E F
15 1 0 0 0 2 0
32 3 0 0 0 0 0
45 2 0 0 0 0 0
73 3 0 0 50 0 0
83 1 0 5 0 2 0
89 1 0 0 0 0 0
91 1 0 0 0 0 0
108 4 0 0 0 0 0
119 1 0 0 0 0 0
123 g 0 0 g 0 0
124 2 0 0 g 0 0

Report No. 9 the distribution of events time, by 10 minute bins (last bin is for all events time larger
than 1 hour), for each network site.

Spatial Model Report No. 9

2020/09/26 13:18:47

Time Distribution of Events in Minutes

Each cell contains count of events from a specific site with the column length in minutes

0-10 11-20 21-30 31-40 41-50 51-60 60> Total
1 0 1 o0 0 0o 2 4

0 |8 5 5 3 3 4 (28

o 0o 0o 0 0 0 2 2

0 6 0 2 3 0 0 1
21 0 1 0 1 5

1 1 1 7 0 1 4 |15

0 |1 1 0 0 0 0 2

1 4 2 3 4 0 4 |18

0 0 0 1 20 2 5

157



Report No. 10 lists all object parameters, for all SM objects. An example for a single object is found
below.

Spatial Model Report No. 10

2020/08/08 22:46:06

Object Advanced Parameters

Id 2
SPADescription

SPADescription

SPAObjectType 1
StationAName

StationBName

StationCName

SPACHhster

SPAStatus PAUSE
SPAMeasurement] CcO
SPAMeasurement2 Conductivity
SPAMeasurement3

SPAMeasurement] Units micS
SPAMeasurement2Units micS
SPAMeasurement3Units
MaxmumTmme_m_Minutes_Measurement_is_Constant 60
Valid_LowerLmit 100
Valid_HighLimit 1200
LearningPeriodTypeForLag 1
LearningStartDateForLag 2018/01/01 00:00:00
LearningEndDateF orLag 2020/01/01 00:00:00
LearningWindowSizeDaysForLag 120
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Report No. 11 lists all historical events, by station, events time, measurement, and event type.

Spatial Model Report No. 11

2020/09/26 13:21:24
Detailed Events List

Time Period: 2020/09/24 13:04:14 - 2020/09/26 13:04:14

Object_Id Stationd StationB SPAMeasurement? StartTimeStamp TriggerTimeStamp EndTimeStamp SPACluster SPACluster LimitsViolation PoorPrediction PoorSPALimits NeData
w = w0 A e v | | 0
200 ) Turbidity 33{4"20201:‘4155 ?giow MidCenter MidCenter |1 1 1 0
302 | Turbidity 19,3{4"20201:”:45 MidNorth  MidNorth |1 1 1 0
642 1 Turbidity 19,3{4"20201:”:45 MidNorth  MidNorth |1 1 1 0
m ] oH SHIANTAZIS B0 MdSown  MidSowh 1 1 1 0
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4.13 Quiz for Unit C

10.

11.

12.

13.

What types of models are available in the Spatial Model?

What types of alarms are can be raised by the spatial model?

What are the possible network regimes the SM may be in?

When is a "poor statistical limits" alarm raised?

When is a "poor prediction" alarm raised?

What is the role of the delay time in alarm generation, and how does it affect the alarms raised?
What type of charts are available in the Spatial Model?

What types of reports are available in the Spatial Model?

What parameters affect flow time estimation?

How can the credibility of flow time estimates be assessed?

Why would the user select to copy flow time estimates from one pair model to another?

Briefly explain what is the prediction model used to predict the target node measurement value.
Explain what are the explanatory and predicted variables, and how flow time is taken into

consideration.

What parameters are used for configuring the prediction values?
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Appendix A — Additional graphs for flow time estimation and cross

validation
This appendix shows Score function graphs for additional models.

A.1 additional graph for flow time estimates by regimes
Figures 146-153 show score functions for different objects
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Figure 146: Score function for objects 0164,0166,0167, three pair objects for the same source and target stations, using
different measurements. Score functions for measurements in the same regime were normalized to have a maximum of 1 in

each subplot so that the estimated flow-time (X coordinate of the maximum) could be compared for estimates obtained from
different measurements.
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Figure 147: Score function for objects 069, for 16 regimes. Score functions computed based on Conductivity measurements.
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Figure 148: Score function for objects 076, for 16 regimes. Score functions computed based on Conductivity measurements.
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Figure 149: Score function for objects 0107, for 16 regimes. Score functions computed based on Conductivity measurements.
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Figure 150: Score function for objects 0116, for 16 regimes. Score functions computed based on Conductivity measurements.
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Figure 151: Score function for objects 0240, for 16 regimes. Score functions computed based on Conductivity measurements.
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Figure 152: Score function for objects 0164, for 16 regimes. Score functions computed based on Conductivity measurements.
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Figure 153: Score function for objects 0186, for 16 regimes. Score functions computed based on Conductivity measurements.
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A.2 Additional graph for error estimates for estimated flow times

Figures 154-158 show cross-validation estimates of flow times for different objects. The cross validation
procedure is presented in Section 3.4.

Note that for some Saturday-preday and Friday Evening Regimes, flow times are large and cross
validation estimates do not agree.
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Figure 154: Score functions for cross-validations, for object O116.
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Figure 155: Score functions for cross validations, for object O76.
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Figure 156: Score functions for cross validations, for object 0240.
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Figure 157: Score functions for cross validations, for object 0164.
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Figure 158: Score functions for cross validations, for object O186.
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T value

Appendix B — Additional graphs for the triplets-gamma hypothesis

This appendix shows additional examples for the distribution of T statistics, and their fit to gamma

distributions.
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Figure 159: A sample of data points from Triplet 470, one hour intervals
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Figure 160: Comparison between the data shown in Figure 159, to the best fitted gamma distribution. Subplots show a
histogram comparing the data to the maximum-likelihood fit, Q-Q plot, Empirical and theoretical CDFs and a P-P plot.
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Figure 161: A sample of data points from Triplet 476, one hour intervals
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Figure 162: Comparison between the data shown in Figure 161, to the best fitted gamma distribution. Subplots show a
histogram comparing the data to the maximum-likelihood fit, Q-Q plot, Empirical and theoretical CDFs and a P-P plot.
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Figure 163: A sample of data points from Triplet 308, half hour intervals
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Figure 164: Comparison between the data shown in Figure 163, to the best fitted gamma distribution. Subplots show a
histogram comparing the data to the maximum-likelihood fit, Q-Q plot, Empirical and theoretical CDFs and a P-P plot.
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Figure 165: A sample of data points from Triplet 318, half hour intervals
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Figure 166: Comparison between the data shown in Figure 165, to the best fitted gamma distribution. Subplots show a
histogram comparing the data to the maximum-likelihood fit, Q-Q plot, Empirical and theoretical CDFs and a P-P plot.
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Figure 167: A sample of data points from Triplet 31, one hour intervals

Empirical and theoretical dens. Q-Q plot
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Figure 168: Comparison between the data shown in Figure 167, to the best fitted gamma distribution. Subplots show a
histogram comparing the data to the maximum-likelihood fit, Q-Q plot, Empirical and theoretical CDFs and a P-P plot.
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