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Terms and abbreviations 
Table 2: Terms and Abbreviations 

Abbreviation/ Term Meaning 

CL Chlorine, either Free or Total, depending on station. Typically measured in 
𝑚𝑔/𝐿 

TU Turbidity measurement. Typically in 𝑁𝑇𝑈 units 
REDOX/ORP Oxidation-Reduction Potential. Typically in 𝑚𝑉 units. 
COND Conductivity. Typically in 𝜇𝑆/𝑐𝑚 units. 
FL Flow. Typically in 𝑚3/𝑆 
Water quality 
measurements 

Chemical and Physical measurements for water quality. Examples are the 
above measurements 

Filtering Removing irregular, extremely noisy or non-representative observations from 
the data. 

SM Spatial Model 
Time series, Time Series 
Analysis 

A series of measurements taken across different times. Time series analysis – 
the statistical practice of analyzing time series to gain insights. 

EDS Detectors A statistical module in the Detector EDS (Decision Makers' product) designed 
to detect a specific type of effect or abnormality in the data. 

EDS Event Detection System. 
Correlation A summary statistic quantifying how much does a change in one numeric 

measurement explain the change in a second numeric measurement. 
Autocorrelation 
function (ACF) 

A function quantifying how much is a time series of measurement correlated 
with a time-shifted version of itself. The input argument is the size of the time 
shift. The computed value is the quantity of auto-correlation, or self-
correlation. See section 2.1.1. 

Cross-correlation 
function (CCF) 

A function quantifying how much is a time series of measurement correlated 
with a second time series, after inducing a time-shift to the second series. The 
input argument is the size of the time shift. The computed value is the quantity 
of cross-correlation, or correlation between series after a time shift in one of 
them. See section 2.1.2. 

Robust correlation 
measures  

A correlation measures whose value is relatively stable even if noisy 
measurements are found in the data. 

Bootstrap A statistical resampling procedure, where a set of samples are chosen from 
the original data. The  

Prediction models A statistical model predicting the value of a numeric variable (in our context), 
based on the value of another numeric value. The first variable is referred to 
as the dependent variable, and the latter as the independent variable. See 
Section 2.5 for discussion of prediction models. 

Constant Shift model A type of linear model between 𝑋 and 𝑌, of the form 𝑌 = 𝑋 + 𝑏, explained in 
subsection 2.5 

Linear Model A type of linear model between 𝑋 and 𝑌, of the form 𝑌 = 𝑎𝑋 + 𝑏, explained 
in subsection 2.5 

Kernel regression 
Model 

A type of non-linear prediction model, explained in subsection 2.5. The model 
has no closed formula form, and is data adaptive. 

Pair SM model predicting the measured value of a station downstream based on a 
station upstream. 
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Triplet SM model comparing a triplet of station for detecting abnormal combinations. 
Flow time The time required for a drop of water to travel between two points in the 

network. 
Estimated flow time An estimation for the real flow time, computed using the change in water 

quality measurements in the two stations. See Algorithm in Section 3.2 
Flow regime A set range of times, in certain days or hours, where the flow time is 

approximately fixed. 
Flow-time adjustment/ 
Lag adjustment 

(Relevant when referring to water quality measurements in both a source 
and target station) We explain using an example: Assume water takes 3 hours 
to flow between a source station and a target station. The flow-time adjusted 
measurement associated with the 8PM measurement at the target station, is 
the 5PM measurement at the source station. See Section 3.5.1. for a complete 
definition. 

Window of 
measurements 

In a time series of measurement, a subset of the series measured across some 
time interval, say , a window of three hours. 

Score function / 
Objective function 

A function giving for two time series (perhaps in a specific flow regime), and a 
flow-time value 𝑢, a score of well does a flow-time of 𝑢 explain the correlation 
between the two time series. 

Flow regime selection A statistical analysis process in which different times of the day, and days of 
the week, are classified into different flow regimes based on auxiliary 
measurements such as flow meters, or prior knowledge about the operational 
nature of the water distribution network. 

Prediction, Predicted 
Value 

The statistical method of generating a prediction for numeric value (in our 
context), based on explanatory variables. 

Error distribution The empirical distribution of differences between measurements and the 
predicted values, i.e. the distribution of prediction errors. 

Confidence Interval for 
Prediction/ CI 

A range of values, around the predicted value, where the actual measurement 
will likely be found, with high probability. 

Triplet types Three possible types: Line, Fork-in, Fork-out triplets. 
Spatial Model alarm 
types 

The types of SM alarms are: Limits violation, Poor limits, Poor prediction, No 
data, Triplet Alarms. See Through discussion the at start of Unit C. 
 

Network states A water distribution network can be found in 1 of 4 states: 
State E: Water supplied from an external source 
State R: Water supplied from reservoirs 
State E→R: Network is transitioning from state E to R. 
State R→E: Network is transitioning from state R to E. 

EDS alarms Alarms raised by the EDS, due to one of its detectors. Operators are notified 
regarding alarms. One of the alarm generating detectors is a detector 
connected to SM events, see Section 4.7 for additional details. 

Reports HTML reports on SM statistical models, and historical alarms. See Section 4.12 
for server-side reports, and Section 4.11 for reports on the client-side 
software. 

Quizzes Every one of the three units in this training program ends with a short quiz. 
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1. Introduction 
This document serves as a training program for the Spatial Model (SM) module of the Detector EDS (Event 

Detection System) developed by Decision Makers. The training program is aimed for users operating the 

Detector software, together with the SM module, but it may also be useful to water utility personnel 

operating other SCADA/monitoring systems and seeking to improve their event detection capabilities. 

This document is also meant to be used as a hand-out field-manual, in a 1-2 day workshop introducing 

the SM. 

This document is self-contained and can be read front to back without previous knowledge of statistics. 

We attempt to bring readers up-to-speed on all the statistical and data-analysis techniques needed in 

order to understand how the SM is able to estimate flow time between network locations and monitor 

water quality data for abnormal events.  

The structure of the document is as follows. The training program is comprised of three units: 

• Unit A – "Statistical Prerequisites" 

• Unit B - "Algorithmic and Statistical Methodology"  

• Unit C- "The Spatial Model Software" 

Unit A discussed several background subjects relevant to the SM methodology, such as typical errors in 

data, measurement error filtration, Auto-correlation and Cross-correlation, Non-Parametric measures of 

association and prediction models. 

Unit B discusses in-depth the algorithms used by the spatial model. The unit begins with a "bird's eye 

view" of the SM, and the problems it is meant to address. Specifically, we provide motivation for 

comparing pairs and triplets of sensors across a network in order to pinpoint the location of water quality 

events better. The unit introduces the SM score function, a non-parametric equivalent of the cross-cross 

correlation aimed at estimating the time required for water to flow between network measurement 

locations (henceforth known as "flow time", "lag time" or "delay time"). Afterwards, the unit proceeds to 

describe how to make use of the flow time estimate in order to train prediction models for water quality 

at different network locations. Models for pairs and triplets of sensors are described. 

Unit C introduces the SM software module of the EDS. The unit reviews the SM module screen-by-screen 

and describes: how the water quality can be monitored using the SM; how the SM connects to the exiting 

EDS alarm management system; how models for pairs or triplets can be built; and how their performance 

can be reviewed. The different methods and algorithms presented in unit B are implemented in the 

software presented in Unit C. Therefore, at the start of each lesson in unit C, we describe which lessons 

in Unit B are most relevant to the current discussed screen/model.  

Each lesson in Units A and B introduces a few concepts and should take no more than 10-15 minutes to 

go over. After a short intro, several examples based on real data would be given, usually in the form of 

graphs and figures.  

Each unit concludes with a short quiz, 30 minutes in length, aimed at testing if the main concepts of the 

Unit were understood. Quizzes are usually comprised of 15-20 questions, most of which are multiple-

choice. Answers to the quizzes are given after each quiz.  
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2. Unit A - Statistical Prerequisites 

2.1 Introduction to Time Series Analysis 
A   time series is a series of repeated measurements from the same source of data, e.g., a water quality 

measurement device, across time, usually at fixed and predetermined intervals. The statistical study of 

time series was developed significantly in the 1980s, in order to provide analysis methods for economical, 

meteorological, and physical science datasets. Unit A will focus on preliminary concepts in the analysis of 

time-series data, that will be relevant the theory and application of the Spatial Model (SM) module of the 

Detector EDS. 

Time series analysis methods include both descriptive statistics of time series data, along with advanced 

modeling methodologies. The key assumption in analyzing this data is that data points are measured over 

fixed time intervals. Many times, this assumption is not met by the data. For example, for water quality 

measurements, e.g., turbidity and conductivity, data is collected at varying time resolutions at a different 

location at the network. Moreover, field analyzers may have some jitter in their measurement times: while 

measurements may ideally be taken every minute or 10 minutes, some measurements may be unavailable 

or may be delayed due to technical difficulties at field analyzers. Problems that may include this type of 

jitter include faulty measurements that are discarded or redone or temporary lack of communications. 

The next example will demonstrate differences in time resolutions across different sampling locations in 

a water distribution network. 

Example 2.1A – varying time resolution: (Figure 1 shows a time series of conductivity measurements, 

across a month of data. Measurements are taken every minute (60 seconds), forming 1440 data points 

per day. A key property of water quality time series data is observed in the graph: consecutive  

 

Figure 1: Example for varying time resolution - conductivity measured at upstream station at 1 minute intervals, 
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measurements are highly correlated. This feature of water quality time series data is called auto-

correlation ( "the correlation of a series with itself") and will be discussed shortly. Water quality time 

series data is expected to be "smoother" across time as it is measured deeper, or downstream, into the 

water distribution network. The larger the volume of water producing the measurements, the more time 

and water volume were available to attenuate changes in the water quality originating at the water source 

for the water distribution network. In fact, abrupt changes in water quality that cannot be explained, e.g., 

are not maintenance work, may be indicative of a water quality event. 

Figure 2 shows time series data for conductivity from a nearby station in the network, for the same dates. 

Characteristic water flow in this network involves water measured in the station depicted in Figure 2, 

typically 2-3 hours after being measured in the station depicted in Figure 1.  This can be verified by the 

same "curve" of conductivity measurements appearing almost identically at the two stations. However, 

there is a key difference between the two water quality analyzers in Figures 1 and 2: while the analyzer in 

Figure 1 measures conductivity once every minute, the analyzer in Figure 2 measures water quality only 

once every 5  minutes. The reason for the difference is that the first analyzer is connected to power in a 

water monitoring facility, and therefore can gather measurements continuously. The second series of 

measurements were collected by a battery-powered water quality analyzer. This form of low energy 

measurement device collects information once every 5 minutes and transmits collected data once every 

two hours. Lower sampling rates allow for longer battery life (possibly spanning years), and for 

measurements to be gathered at locations were power or facilities are not easily available.  

 

Figure 2: Example for varying time resolution - conductivity measured at downstream station at 10 minute intervals, 
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While the data series in Figure 1 contains more data points, it does not contain additional information on 

the underlying water quality. Due to high autocorrelation ("smoothness") of conductivity data, a single 

measurement once every 10 minutes is sufficient in order to describe water conductivity up to a change 

in 1-2 uS/cm. 

Analysis of time series data usually involves treating data as a series of equally spaced points in time. 

Moreover, for different time series to be compared, the temporal sampling resolution of different series 

needs to be identical. With equal temporal resolution, if the first measurements of two series are aligned 

in time, so are all succeeding measurements. Therefore, a mandatory preprocessing step for time series 

analysis is to coerce data to a fixed grid of measurements in time. 

When working with time-series data in the SM model, one method for coercing time-series data to 

predetermined, fixed resolution grids of measurements would be to consider the median value in fixed 

time intervals bins. For example, the two data series shown in Figures 1 and 2 could be preprocessed to 

two series of measurements, with median taken over 30 minutes intervals, starting from 2020/03/25 

21:30. After aggregation by medians, the two time-series could be written as : 

𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛 

𝑌1, 𝑌2, 𝑌3 , … , 𝑌𝑛, 

with different X's and Y's corresponding to the median values of conductivity in 30-minute intervals in the 

first and second time-series, respectively. 𝑋1 would correspond to the median value of conductivity 

measured in station 1, with the median taken across measurements from 2020/03/25 21:30 to 

2020/03/25 21:59 (30 measurements total). 𝑋2 would correspond to the median value of conductivity 

measured in station 1 across measurements from 2020/03/25 22:00 to 2020/03/25 21:29. 𝑌1 would be 

computed by taking the median of all conductivity measurements between 2020/03/25 21:30 to 

2020/03/25 21:59 (5 measurements total, since station 2 measures once every 5 minutes). The slots in 

the temporal grid collecting measurements will be referred to as bins. 

This method has the benefits of coercing two data series to the same temporal resolution while avoiding 

jitter in measurement times. A favorable side effect of this method is that extremely noisy measurements 

("spikes") in the data, unrepresentative of the actual water quality, are filtered out from the data if 

adjacent measurements in time are without extreme noise (for example, given five values, one of which 

is an outlier in measurement, the median value of the five measurements is not affected by the outlier). 

Types of errors and noise in data, ways to counter them, will be the topic of Section 2.2. 

The above method is fully valid when analyzing historical data. However, when analyzing on-line data, 

data becomes valid as time progresses. Consider a case where we wish to assess the conductivity value in 

station 2,  as of 21:04. Taking the median value of all measurements collected between 21:00 and 21:30 

as of 21:04 would result in taking the median of a single measurement collected at 21:00. The next 

measurement for this bin in the time grid will be available (hopefully) only at 21:05. Since this single 

measurement may be faulty, the representative median value may still be unreliable. A solution to this 

problem is to partition measurements into 15-minute bins in time (instead of 30-minute bins), and take 

the representative values in each time point to be the median over the two most recent time interval 

bins.  The key idea is that while a single bin might contain only a single measurement (making the median 

vulnerable to noisy data points), two bins will always contain more than a single data point. For example, 
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using this approach, the representative value at 21:04 will be computed by taking the median value of the 

measurements collected at 20:45,20:50,20:55, and 21:00.  

Whenever computing a median value for an even number of values, The median will be taken to be the 

average of the two most central measurements. If we ever encounter a setting where we need to compute 

the median of 2 measurements, the median will simply be the average of the two measurements.  

2.1.1 Autocorrelation 
Previously, we have observed water quality time-series data to be relatively smooth, with measurements 

in high proximity in time also being in high proximity in value. Without delving into definitions, we called 

such time series highly autocorrelated. In this subsection, we properly define the autocorrelation of a 

time-series and present several properties of this autocorrelation with respect to time series data. 

Before we define autocorrelation, we recall the definition of the Pearson correlation coefficient. Section 

2.3 will discuss several types of correlation in-depth, but for now, recalling the Pearson correlation will 

suffice.  

Consider two vectors of observations: 

𝑋1, 𝑋2, … , 𝑋𝑛 

𝑌1, 𝑌2, … , 𝑌𝑛  

It is assumed that 𝑋1 and 𝑌1 were measured jointly, 𝑋2  and 𝑌2 were measured jointly, and so on. For 

example, 𝑋 and 𝑌 measurements could represent pH and Conductivity measurements taken at the same 

station, jointly, at 8 am, with different pairs of measurements (corresponding to index subscripts) 

representing different days. A possible statistical question of interest is how values of 𝑋 and 𝑌 vary 

together: When X increases, is it likely to see 𝑌 increase/ decrease/ remain constant? Correlation analysis 

quantifies the strength of the statistical relationship between two quantities, both in terms of 

directionality (increase/ decrease) and magnitude (a slight increase compared with a large increase).  

In terms of notations, the notations 𝑋1:𝑛 and 𝑌1:𝑛 will be used to denote the two series of measurements, 

with 𝑛 measurements in each series. When referring to a sub-series (part of a series) of measurements, 

we will use the notation, 𝑋𝑠𝑡𝑎𝑟𝑡:𝑒𝑛𝑑   , with 𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑛𝑑 denoting two indices, to denote the sub-series 

 𝑋𝑠𝑡𝑎𝑟𝑡 , 𝑋𝑠𝑡𝑎𝑟𝑡+1 , … , 𝑋𝑒𝑛𝑑−1, 𝑋𝑒𝑛𝑑 , 

a sub-series including 𝑒𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡 + 1 values total. Let 𝑚𝑒𝑎𝑛(𝑋𝑠𝑡𝑎𝑟𝑡:𝑒𝑛𝑑) and 𝑠𝑑(𝑋𝑠𝑡𝑎𝑟𝑡:𝑒𝑛𝑑) denote the 

mean and standard deviation of a series of measurements, respectively. The sample Pearson correlation 

coefficient between two series of joint measurements is defined to be: 

𝑟(𝑋1:𝑛, 𝑌1:𝑛) =
1

𝑛 − 1
∑ (

𝑋𝑖 − 𝑚𝑒𝑎𝑛(𝑋1:𝑛)

𝑠𝑑(𝑋1:𝑛)
) (

𝑌𝑖 − 𝑚𝑒𝑎𝑛(𝑌1:𝑛)

𝑠𝑑(𝑌1:𝑛)
)

𝑛

𝑖=1

. 

This value can be thought of as the mean product of time series values, with each series normalized to 

have a mean value of 0 and a standard deviation of 1. 

The Pearson correlation coefficient has value within the range -1 to 1 (including -1 and 1), with negative 

values describing a negative association (when X is smaller than it's the mean value, Y tends to ba larger 

than it's mean value) and positive values describing a positive association (when X is smaller than it's the 
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mean value, Y tens to be smaller than it's mean value as well). A similar value called the sample covariance 

is given by: 

𝑐𝑜𝑣(𝑋1:𝑛, 𝑌1:𝑛) =
1

𝑛 − 1
∑(𝑋𝑖 − 𝑚𝑒𝑎𝑛(𝑋1:𝑛))(𝑌𝑖 − 𝑚𝑒𝑎𝑛(𝑌1:𝑛))

𝑛

𝑖=1

. 

This value is not constrained to the range [−1,1], since the two series of measurements were not 

normalized. 

We proceed to describe the sample autocorrelation function of a series of measurements. The 

autocorrelation function of a series of measurements (𝑋1:𝑛), is given by: 

𝐴𝐶𝐹(𝑋1:𝑛, 𝛿) = 𝑟(𝑋(𝛿+1):𝑛, 𝑋1:(𝑛−𝛿))

=
1

𝑛 − 𝛿
∑ (

𝑋𝛿+𝑖 − 𝑚𝑒𝑎𝑛(𝑋(𝛿+1):𝑛)

𝑠𝑑(𝑋(𝛿+1):𝑛)
) (

𝑋𝑖 − 𝑚𝑒𝑎𝑛(𝑋1:(𝑛−𝛿))

𝑠𝑑(𝑋1:(𝑛−𝛿))
)

𝑛−𝛿−1

𝑖=1

. 

For each value of 𝛿, the value of 𝐴𝐶𝐹(𝑋1:𝑛, 𝛿) gives the Pearson correlation value between 𝑋1:𝑛 with the 

first 𝛿 measurements removed and 𝑋1:𝑛 with the last 𝛿 measurements removed. Intuitively, 𝐴𝐶𝐹(𝑋1:𝑛, 𝛿) 

gives the correlation of 𝑋′𝑠 with a lagged version of the 𝑋's, with the lag being 𝛿 time units behind. 

The value of 𝐴𝐶𝐹(𝑋1:𝑛, 0) is always 1 since the correlation of the data with itself is always 1. As delta 

increases, the value of 𝐴𝐶𝐹(𝑋1:𝑛, 𝛿) tends to decrease. If the series of 𝑋's is relatively smooth across 

changes in time, the decrease of 𝐴𝐶𝐹(𝑋1:𝑛, 𝛿) across values of 𝛿 is slow, since the series 𝑋 looks almost 

the same, after shifting it 𝛿 measurements in time. The following example demonstrates the relationship 

between time series smoothness and how the ACF changes by 𝛿. 

Example 2.1B – Time-series smoothness and the ACF: Figures 3 and 4 show Total Chlorine as measured 

across a month in two sampling locations across a water distribution network. The sampling location 

depicted in Figure 3 is placed a few hours of water flow away from the main entry point of water to the 

city. The city is supplied with chlorinated water from an intercity water distribution system. Figure 4 shows 

total chlorine at another sampling location, however, this sampling location is in a different DMA, from 

the location depicted in Figure 3. All water passing into the DMA must pass through a large reservoir. We 

can observe changes in chlorination levels across the graphed time period, as chlorination levels in Figure 

3 vary in a daily manner. These changes in chlorination are unobserved in Figure 4, since chlorination is 

almost constant for water coming from the reservoir. The time series observed in Figure 4 is smoother 

than the one observed in Figure 3 and has less changes across time. After Figures 3 and 4, we continue 

the discussion, and show how this form of "smoothness" is translated into the change rate of the ACF 

across 𝛿. 
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Figure 3: Total CL measured during a month, in data analyzer connecter directly to an intercity water source. 

 

 
Figure 4:Total CL measured during a month, in data analyzer downstream from a large water reservoir.The water reservoir itself 
is filled from the same source as the sampling station in Figure 3. Note the drop at 2018/04/08 in baseline values due to sensor 
calibration. 
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Figure 5 shows the ACFs for the total CL time series in the two sampling locations depicted in Figures 3 
and 4. The ACFs were evaluated over three months of data, starting from 2018/04/10 (removing the 
calibration event), with data aggregated to hourly median values. Observations larger than 0.5 mg/L or 
smaller than 0.345 mg/L were removed prior to analysis. As expected, both ACFs have a value of 1 for a 
lag (𝛿) of 0 hours. As the lag increases, the ACFs decrease in value; however, their decrease occurs at 
different rates. We observe the ACF for the second sampling station (Figure 4) in red to decrease at a 
slower rate, than the black ACF, describing the first sampling station (Figure 3). The slower decay of the 
ACF indicates a higher correlation of the data time series compared with time-dilated versions of itself. 
This results from the higher smoothness of the time series.  
 
Interestingly, the black ACF reaches negative values, indicating negative autocorrelation for some lag 
values. Negative ACF values are frequent in periodic time series data, were certain lags (𝛿s) may cause 
the maxima and minima of the data, and its respective time dilated version to overlap. 
On the next page, we discuss why it was crucial to remove the calibration event from the data before 
computing the ACF. 

 
Figure 5: ACFs functions for total CL  time series in the sampling locations shown in Figures 3 and 4. ACFs were computed for three 
months of data, starting from 2018/04/10 (removing the calibration event). Data was aggregated to hourly median values across 
bins before computing ACFs. Observations larger than 0.5 mg/L or smaller than 0.345 mg/L were removed prior to analysis. 

 
 
 
 
 
 

First station 

Second station 
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Figure 6 shows the ACFs for analysis similar to the one presented in Figure 5, with one crucial difference: 
analysis was performed for data starting from 2018/04/01 and up to 2020/04/14, so the calibration event 
of 2018/04/08 in the second time series was included. With the calibration event included, we observe a 
peculiar behavior: despite the second station having locally (in time) smoother measurements, it's ACF 
not descends substantially faster and reaches and ACF value of 0 at 𝛿 = 50 ℎ𝑜𝑢𝑟𝑠. The reason for the for 
this linear descent1 in the red graph originates from the calibration event at 2018/04/02. Having a 
calibration event in the data changes the "data series mean" substantially for different values of 𝛿. Since 
the baseline measurement value changes, the subtraction of data means (in the ACF definition) makes 
the ACF incomparable for different values of 𝛿. Section 3.2 in Unit B will discuss how calibrations are 
accounted for in the SM. 

 

  
Figure 6: ACFs similar to the ones presented in Figure 5 (see figure description for details); however, the analysis was performed 
for data starting from 2020/04/01 and up to 2020/04/14, and with the calibration event in the second station included.  

 
  

 
1 To those recalling functional analysis, the ACFs mimics the convolution transform of a step function with another 
(shifted) step function. 

First station 

Second station 



17 
 

2.1.2 Cross-correlation 
We proceed to define the cross-correlation function (CCF). Suppose we observe to series of 

measurements: 

𝑋1, 𝑋2, … , 𝑋𝑛, 

𝑌1, 𝑌2, … , 𝑌𝑛, 

then the cross-correlation function for a positive lag, 𝛿 > 0, is defined to be: 

𝐶𝐶𝐹(𝑋1:𝑛, 𝑌1:𝑛, 𝛿) = 𝑟(𝑋(𝛿+1):𝑛, 𝑌1:(𝑛−𝛿))

=
1

𝑛 − 𝛿
∑ (

𝑋𝛿+𝑖 − 𝑚𝑒𝑎𝑛(𝑋(𝛿+1):𝑛)

𝑠𝑑(𝑋(𝛿+1):𝑛)
) (

𝑌𝑖 − 𝑚𝑒𝑎𝑛(𝑌1:(𝑛−𝛿))

𝑠𝑑(𝑌1:(𝑛−𝛿))
)

𝑛−𝛿−1

𝑖=1

. 

For a negative lag, 𝛿 < 0, we can compute the CCF value using 𝐶𝐶𝐹(𝑌1:𝑛, 𝑋1:𝑛, −𝛿). If the ACF, at some 

value 𝛿, describe the correlation of the 𝑋's with a time dilated (𝛿 units in time) version of themselves, 

then the CCF at value 𝛿 describes the correlation between 𝑋's, and a time dilated version of the 𝑌′𝑠, for 

some value of 𝛿. The next example will demonstrate why the CCF is useful in our analysis of water quality 

data. 

Similar to the autocovariance function defined in Section 2.1.1, one may also define the cross-covariance 

function by avoiding the division by 𝑠𝑑(𝑋(𝛿+1):𝑛) and 𝑠𝑑(𝑌1:(𝑛−𝛿)) in the above expression. 

Example 2.1B – The CCF and it relation to spatial water quality patterns in the water distribution 

network: Figures 7 and 8, describe two time series of conductivity measurements taken at a Source and 

Target station, respectively. The data displayed in the graphs is from Match-April 2017. Water flows in 

this network from the Source station to the target station. We can see the changing pattern of conductivity 

is similar in both stations. Looking at Figure 9, showing a scatterplot of median hourly values across a 45 

day period, we see the measurements in both stations are highly correlated. We continue discussing the 

CCF for this data after Figure 9. 
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Figure 7: Conductivity measurements for a time period of 40 days in a Source station. Water from this station flows to the 
station described in Figure 8 (the Target station). 

 

 
Figure 8: Conductivity measurements for a 55 day period in the Target station, receiving water from the Source station depicted 
in Figure 7. 
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Figure 9: Scatterplot for conductivity measurements from the Source and Target stations, depicted in Figures 7 and 8, 
respectively.Each point represents a joint measurement taken from the two stations at the same hour, with X and Y values 
representing hourly median values.   

 
Figure 10 shows the Cross-correlation Function (CCF) for the two conductivity time series, computed over 
45 days of data, after aggregating the datapoints to hourly medians. We note that unlike the ACF, which 
considered   only positive lag values, the CCF considers both positive and negative lag values. Both positive 
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and negative lags can be considered, since the correlation of series of X's can be computed with both a 
right-shifted or left shifted version of the series of Y's. 
 
The CCF shows a distinct peak at a lag of three hours, suggesting the time required for water flow 
between the two stations is roughly 3 hours. This is a very coarse estimate since: 
 I) There is no reason to assume the time required for water to flow is constant at all times. 
 II) There is no error estimation for the lag of three hours: are 45 days enough to provide an estimate? 
Will a different time period produce a different number? And if so, by how much? 
 III) We have no certainty the outliers in the data may bias the lag value at which the CCF receives its 
maximum value. 
 
Throughout Unit A, we will describe tools that allow us to address issues I-III. Unit B will implement these 
tools altogether in order to address the above challenges. 

 
Figure 10: CCF for the conductivity data from the Source and Target stations, computed for for a 45 day period starting from  
2017/03/04. Data points were aggregated to bin, and hourly median values were used to represent measurements before 
analysis. 

 

  

[Hours] 

urs 
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Figure 11 shows concurrent, hourly median, conductivity measurements for the two measurement sites 
depicted in Figure 7-9, for a time span of 300 days. The data includes several calibrations of conductivity 
sensors throughout the time period, as observed by the 'jumps' between several linear relations in the 
data, featuring several different slopes. Figure 12, shows the CCF for the data depicted in Figure 11. While 
the CCF has a maximum present at LAG=3 Hours, it is much less distinct than the maximum presented in 
Figure 10 (avoiding a technical definition for 'maximum distinctiveness' at the moment). The flattening of 
the CCF is mostly due to normalization being done with means and standard deviations computed over a 
longer time period, containing several sensor calibration configurations. Unit B will address flow time 
estimations for time periods with several calibrations in detail. 

 
Figure 11: Conductivity measurements, for the two stations described in Figure 9, across a timespan of 300 days. 

 
Figure 12: CCF for the data presented in Figure 11. 

 

[Hours] 

urs 
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2.2 Irregular measurements and filtration methods in Time Series Analysis. 
In Section 2.1, we have seen in Example B how a change in the baseline of sensor measurements, due to 

sensor calibration can bias analysis results. Careful analysis of the data and filtration of the calibration 

event, allowed the analysis in Example B to reach the required result (relate between the ACF decay rate 

by lag and data smoothness). Generally, data preprocessing and filtering must be performed before any 

statistical analysis. However, certain types of outliers and noise patterns are unique to water quality data 

and require specialized preprocessing. In Section 2.2.1 we detail several known forms of outliers common 

to water quality data. In Section 2.2.2, we describe possible solutions to the faulty data forms presented 

in Section 2.2.1. The solutions presented in Section 2.2.2 will be implemented throughout the Spatial 

Model methodology described in Unit B. 

2.2.1. Some common forms of outliers in water quality data. 
Fixed value – Figure 13 shows pH, Free-CL, and Turbidity measurements across a time span of two days. 
The turbidity measurements are fixed across the two days. This result is very unlikely since a constant 
level of turbidity may be experienced at levels close to zero (increased variance for turbidity is associated 
with an increased the baseline value), but not at values around 0.4 NTU. This type of phenomenon most 
likely indicates a problem at the analyzer level, since other measurements show valid values. 
  

 

Figure 13: pH, Free CL, and TU measurements for a time span of two days, as measured in a water quality analyzer. Turbidity 
measurements are fixed across the two days, but pH and Free CL measurements vary, indicating a problem with the turbidity 
measurement, most likely at the analyzer level. 

 
Communication problem – Figure 14 shows water quality data for three measurements, pH, Turbidity, 
and Free CL, for a time span of 24 hours as measured by a water quality analyzer. We observe a drop of 
all three measured values to zero, around 07:44 AM (marked by a red rectangle). This concurrent drop to 
zero can be due to a communication failure between the analyzer to the SCADA system, or due to a 
hardware failure at the analyzer level. A drop to zero in all three measurements indicates this data point 
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should be removed from all future analysis. Typical values for communication faults or hardware failures 
include the value 0, the value 65535, the value 999 or negative values.  
 

 
Figure 14:A drop to zero for three conqurenet measurements at water analyzer, at the same time. This phenomenon in the data 
indicates a communucation failure. 

IO jump – Figure 15 shows a spike, for a single measurement, in three different measurements of the 
same water quality analyzer at the same time. Such jumps can be due to a voltage spike or a hardware 
fault in analog IO channels used to connect the water quality analyzer to a controller. 

 
Figure 15: A concurrent jump in all three measurements due to a spike in IO analog channels. 
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CL drop – Figure 16 shows a drop in measured Free-CL values, at three single measurements (marked by 
red arrows). These drops in Free CL measurements are due to a faulty measurement, and do not 
represent the underlying levels of Free CL in the water. 
 

 
Figure 16: A time series for Free CL measurements. Single measurements are "negative spikes", o drop from the base line value. 

Calibration – Figure 17 shows a calibration event in the data sample. The drop in turbidity values is due 
to scheduled maintenance and cleaning of the measurement compartment of the analyzer. Free CL 
measurement experience extreme high and low values due to  the use of buffers in calibration. 
 

 
Figure 17: an event of sensor calibration and maintenance in the data in the data. A drop in turbidity is due to scheduled 
maintenance and cleaning of the measurement compartment of the analyzer. The change in CL is due to use of buffers in 
calibration. 
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2.2.2. Some simple, yet useful, ways to filter out faulty data measurements in water quality data. 
 

Temporal binning and use of representative values – outliers and faulty measurements can be removed 

from the data, by binning the data points by their timestamps and taking the median of measurements 

within each bin as the representative value for measurements. Time series analysis and modeling can 

proceed by performing analysis on bin representative values instead of raw measurements. This approach 

was discussed in detail in Section 2.1. 

Filter out by variable specific limits – Variables can be given upper and lower thresholds, limiting the 

measurements considered valid for analysis. For example, pH values above 8.5 or below 6.5 can be 

regarded as sensor malfunctions and can be removed from the data. Setting limits for valid variable 

measurements is location and time-specific, and involves looking at the distribution (histogram) of 

measurements, taken over an extended period of time. 

Removing measurements that are constant across long periods of time –  Water quality data may include 

measurements that are constant for extended periods of time, either to communication problems with 

analyzers or due to hardware faults. While a few consecutive measurements carrying the same value may 

not be due to an error, measurements that are constant across long periods of time are improbable. These 

fixed measurements should be removed from the data before performing analyses of the data, and even 

before the temporal binning of data, since fixed measurements misrepresent the underlying water quality 

values, and thus may bias analyses' results. Choosing the cutoff time period, after which a time interval 

with fixed measurement values should be removed, is location and measurement specific, as we show in 

the next example. 

Example 2.2 A – removing data from extended time periods with constant measurements – For this 

example, we consider the Flow values as measured at the exit point from a water reservoir, providing 

water to a large residential district. Flow measurements are given in 𝑚3/ℎ, with typical values of 500-700. 

Analyses of flow measurements will be the main focus of Section 3.3 in Unit B, discussing the partitioning 

of water quality data to different flow regimes based on the distribution of water flow measurements. 

Therefore, preliminary preprocessing is required in order to ensure faulty flow measurements do not 

compromise the results of the analysis. 

Throughout the two years of flow data gathered from the selected station, there are several time 

durations with values of zeros. These zeroes represent a technical error rather than actual zero flow for 

continuous times. Figure 18 gives the distribution of the lengths of time, in minutes, for the different 

periods where no flow were reported. Bins for the histogram are 20 minutes long. For example, if we 

observe the red arrow in Figure 18, we have a single “no-flow” event which lasted over 800 minutes, 5 

events which lasted between 600 to 800 minutes (green arrow) and over 150 “no flow” events which 

lasted no more than 20 minutes (most of which lasted for a single measurement, blue arrow).  All time 

periods with zero flow measurements that are above 30 minutes in length sum up to several days worth 

of data that should be removed from all further water flow analyses. 
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Figure 18: Histogram showing the distribution of of time period length having fixed flow values at a flow meter located at a water 
reservoir exit. The blue arrow shows most time period with fixed measurements are under 20 minutes, and are mostlikely a few 
consecutive measurements with the same values. The green and red arrows show 5 events with no flow measurements for at 
least 10 hours (600 minutes), and single time period with fixed flow measurements for over 800 minutes, respectively. 

 
Remove calibration and water quality events – Some water quality events and time periods, including 
maintenance, are better removed from the data, before performing certain analyses. Scheduled 
maintenance and sensor calibration usually require some manual interference with the water measured 
by the sensor, e.g., disconnecting from the water line in order to clean measurement compartments, and 
using premade water samples for calibration. Sampled values do not represent the underlying water 
properties in the network, and should be removed from analyses. 
 
Abnormal water quality events inserted into the data used to determine the threshold for declaring future 
water quality events may bias to thresholds, and make them more conservative, at the danger of a "false 
negative":  missing future water quality events. Therefore, abnormal water quality events need to be 
removed from any analysis used to determine alarm thresholds. However, analyses used to determine 
flow time between stations may benefit from using data from abnormal water quality events that 
observed traveling through the water distribution network at different times at locations. 
 

Ranking – Ranking is a data transformation replacing a series of measurements by their respective 

ranks, from 1 to N. For example, ranking the observations 5,8,6.5,32,9 would lead to the ranks 1,3,2,5,4. 

The purpose of ranking is to confine the possible values the data may take to a predetermined set of 

values that A) is known in advance, and is scale agnostic B) is unaffected by outliers in the data and C) 

maintains their relative ordering. 
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A data transformation that can be given as a counterexample, for upholding criteria A-C is normalizing 

data sets by subtracting the mean of sample values from the data. The sample mean may be highly 

sensitive to noise in the data, and hence may "mean subtraction" may compromise further analyses. 

We note that rankings are only interpreted within a sample. If a measurement was given the rank 46, out 

of 52 measurements, there is no way of knowing what exact rank it will obtain in another sample. 

Moreover, ranking a single sample is irrelevant – it will always receive the rank of 1. 

While ranking upholds properties A-C described above; some analyses are cannot be performed on ranks, 

setting thresholds for irregular events or finding the baseline measurement value for some sensor. 

A form of analysis which can benefit from ranking observations before analyses, is computing correlations. 

If two series of measurements are positively correlated, measurements with high values in the first series 

are likely to be associated with measurements with high values in the second series. This association can 

still be observed in ranked datasets: if both data series are ranked, measurements with high ranks in the 

first series are likely to be associated with measurements with high ranks in the second series. Analyzing 

correlations over ranks, rather than over the raw data, ensures that correlation estimates do not hinge on 

outliers in the data. Robust measures of correlations for data analysis will be the our next topic of 

discussion in Section 2.3. 
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2.3 Correlation and Non-Parametric Correlations 
In Section 2.1, we showed how correlation coefficients may provide insights when discussing time series 

smoothness, or the relationship between one time series of measurements to another. In Section 2.2, we 

presented several types of measurement errors and outliers in the data. At the end of Section 2.2, we 

briefly introduced the idea of transforming data measurements to ranks prior to analyses. The purpose of 

this subsection is to extend the discussion to other correlation measures (other than Pearson), that are 

robust to outliers in the data . The next example will serve as a working example for most of the 

subsection. 

Example 2.3A – simulated dataset for discussing the effect of outliers on correlation estimation: Figure 

19 shows a simulated dataset with 50 data points. The X,Y values were simulated from a data generating 

process, causing them to have a mild but distinct positive correlation,  as seen in the graph. We are 

interested in testing how the Pearson correlation coefficient will respond to noise added to the first 

(leftmost) data point in the chart. 

(Example cont. on next page) 

 

Figure 19: A simulated data sets with 50 data points, showing a positive correlation. 
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Figure 20 shows 5 augmented version of the data presented in Figure 19. In each version of the data, the 
Y value of the first measurement was increased by either 0 (no change in value), 0.5,1.0,1.5 or 2.0. The 
first point is marked in red to show it's movement across different versions of the data.  
 
 

 

 
Figure 20: Five augmented versions of the data presented in Figure 19, with varying levels of noise added to the first 

measurement. The single point moved between different versions of the data is marked in red. 

We proceed and calculate the Pearson correlation coefficient for the five datasets presented in Figure 20. 

Figure 21 (on the next page) shows the Pearson correlation coefficient as a function of the level of noise 

inserted, for the five datasets displayed in Figure 20. We observe the Pearson correlation coefficient 

decreasing as a function of the level of noise added. We conclude the Pearson correlation coefficient is 

not a robust measure of correlation: even a single measurement may affect the estimated correlation. 

The problem this subsection will address is how to define correlations that are insensitive to outliers in 

the data. 

 

No increase 0.5  increase 1.0  increase 

1.5  increase 2.0  increase 
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Figure 21: The Pearson correlation coefficient as a function of the amount of noise added, for the five augmented datasets 
presented in Figure 20. 

 
 

Robust correlation measures 

We present two robust measures of correlation: Spearman's correlation coefficient, and  Kendalls' tau. 

Spearman's correlation coefficient is defined to be the Pearson correlation coefficient of the ranks of X 

and Y. In order to compute the Spearman correlation coefficient, both sets of coordinates, X and Y, are 

replaced by their respective ranks, and the Pearson correlation coefficient is computed as-is over the rank 

transformed data set. 

In order to define Kendall's tau, we will need to define concordant and discordant pairs of data points. 
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Figure 22 shows a sample data set, with concordant and discordant pairs of points in the data. Concordant 

pairs are pairs of data points were an increase in X values also shows an increase in Y values. Discordant 

pairs are pairs of data points were an increase in Y values shows a decrease in Y values. For a dataset with 

𝑛 points, there are 𝑛 ⋅ (𝑛 − 1)/2 possible pairs of points. 

 

 

Figure 22: Concordant and discordant pairs of data points in an example data set. Concordant pairs are marked by a solid-like. 
Discordant pairs are marked with a dashed line. Not all pairs in the data are marked. 

 

Kendall's tau is a correlation coefficient using the concept of concordant and discordant pairs, in order to 

assess the directionality and magnitude of the correlation between the sample values of X and Y. Kendall's 

tau is defined to be the difference between the number of concordant pairs and discordant pairs, out of 

the total number of possible data point pairs: 

𝜏 (𝑋1:𝑛, 𝑌1:𝑛) =
#𝑪𝒐𝒏𝒄𝒐𝒓𝒅𝒂𝒏𝒕 𝒑𝒂𝒊𝒓𝒔 − #𝑫𝒊𝒔𝒄𝒐𝒓𝒅𝒂𝒏𝒕 𝒑𝒂𝒊𝒓𝒔

𝑛 ⋅ (𝑛 − 1)/2 
 

 

Similar to Pearson's and Spearman's correlation coefficients, 𝜏 also obtains values in the range [−1,1]. 

We now return to our working example, and show the benefit of using these two robust measures of 

correlation. 

 

 

  

𝐗 

𝐘 
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Example 2.3A (continued) – Figure 23 shows the Pearson correlation coefficient, as well as the Spearman 
correlation coefficient and Kendall's tau for the five data sets presented in Figure 20. This figure is the 
equivalent of Figure21, with two additional measures of correlation added. We observe the relative 
decrease in Pearson correlation to be substantially greater than the relative decrease in the other two 
correlation coefficients, as the inserted noise in measurement increases. Next, we extend this example 
and insert noise into several measurements. 
 

 
Figure 23: Pearson's, Spearman's, and Kendall's correlation coefficients as a function of the level of noise inserted to a single 
outlier, computed for the five data sets described in Figure 20. 
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Example 2.3A (continued – noise inserted at five measurements) – Figure 24 shows five data sets, similar 
to the one presented in Figure 19 (the original data), but with noise inserted into the first five 
measurements (as opposed to Figure 20 that showed noise inserted into a single measurement). In the 
next page, we present the three different correlations computed for this data as a function of the level of 
the noise added. 
 

 

 

Figure 24: Five datasets generated from inserting noise to five leftmost measurements in the data described in Figure 19. 

 

  

No increase 0.25  increase 0.5 increase 

0.75  increase 1.0  increase 
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Figure 25 the three correlation coefficients as a function of the level of noise added. Again, the relative 

decrease in Spearman's and Kendall's coefficients is smaller than the one observed in the Pearson 

correlation coefficient as a function of the noise added. The effect observed in Figure 23 is even more 

severe in this figure: Pearson's correlation coefficient may reach zero (no correlation) when only 10% of 

the data are affected by the added noise. Next, we present a real data example comparing the three 

different correlation coefficients.  

 

Figure 25: Pearson, Spearman and Kendall correlation for the five datasets displayed in Figure 24. Correlations are given as a 
function of the noise added. 
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Example 2.3B – Comparing correlation coefficients for data measured in two stations: Figure 26 shows 

Turbidity measurements for a time span of two years, as measured in two neighboring water quality 

analyzers in a water distribution network. Water flows from the first station, called "Source", to the 

second station, called "Target." Data coordinates represent the hourly medians of turbidity 

measurements at the two stations, for the same hour. No adjustment was made for the time required for 

water to flow between the two network locations.  

Data in Figure 26 is characterized by several "clusters" of points, with each cluster having a positive 

correlation (slope). However, different clusters show different slopes. This grouping of observations may 

be due to either a change in the water source, measured compartments of one (or both) sensors being 

affected by dirt or residue, or periodic calibration of the sensors, leading to different "response curves" 

to the actual turbidity values in the water. Nevertheless, within each cluster, we observe a strong positive 

correlation. Looking at the data point cloud as a whole, it is difficult to assess if a correlation coefficient 

computed over the entire dataset will be positive. 

When computing the three correlation coefficients for the data in Figure 26, Pearson's coefficient has the 

value of 0.044, Kendall's tau has a value of 0.157, and Spearman's coefficient has a value of 0.221. We 

observe the two robust measures of correlation presented in subsection to have higher coefficients for 

this data. 

 

Figure 26: Turbidity measurements for a time span of two years, across two neighboring stations. Water flows from the Source 
station (X-axis) to the Target station (Y-axis). Data points represent hourly medians for the same hour at the two stations.   

To conclude, in this subsection, we have shown Pearson's correlation coefficient to be highly sensitive to 

outliers in the data. We presented two correlation coefficients based on the ordering of observations, 

which proved robust to outliers or seasonal effects in the data. 
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2.4 Bootstrap sampling and Bootstrap sampling for time-series. 
The bootstrap is a statistical sampling procedure used to estimate the variance of possible error of an 

estimation procedure. The idea behind the bootstrap is to imitate the variance in the original sample 

caused by sampling, by generating 'possible datasets' that could have been observed, from the same data 

generating process. In it's simplest form, the bootstrap creates a large number of possible datasets, e.g., 

100, each with size identical to the original data, by sampling observations without replacement from the 

original data. The estimation procedure is run independently on the different bootstrap samples, and the 

variance of the different "bootstrapped" estimates is computed, in order to estimate the variance of the 

estimator for the original data. This principle is best demonstrated with an example. 

Example 2.4A – Estimating the variance of the sample mean, when estimating the population means. 

Consider an even 6-sided die. Each of the numbers 1-6 may be sampled with an equal probability of 1/6. 

The population mean or the mean of an infinite number of dice throws, is 
1+2+⋯+6

6
= 3.5. For this 

example, we will assume the population mean is unknown, and we wish to estimate it using a sample 

mean. The sample mean will provide a point estimate, a single number trying to estimate the population 

mean of 3.5. Therefore, we will also be interested in assessing how accurate the sample mean is in this 

estimation, or, what is the variance of the sample mean. Bias estimation will not be discussed in this 

example.  

For our example, we measure 10 independent dice throw results: 

2 3 4 6 2 6 6 4 4 1 

For this data, the sample mean is 3.8. Since we are familiar with the generating process for this data, we 

know the population mean to be 3.5. We are interested in estimating the variance of the sample mean 

(as a procedure), when trying to estimate the population mean. In order to do that, we generate 100 

"bootstrap datasets" from the original data. This is done by sampling 10 observations for each 

generated dataset, with each measured result obtained by sampling one of the original data points with 

equal probability. We obtained the following bootstrap samples: 

Bootstrap sample 1: 1 6 2 1 2 4 4 4 3 4 
Bootstrap sample 2: 2 4 3 4 3 4 6 4 6 4 
Bootstrap sample 3: 6 2 6 1 6 3 6 6 4 3 
Bootstrap sample 4: 4 3 6 6 3 2 6 6 2 1 

⋮ 

Bootstrap sample 100: 2 6 2 1 4 3 4 2 6 2 
 
Each of the 100 bootstrap samples could have been observed instead of the original data, with equal 

probability. We note that the number 5 was not sampled in the original dataset. Therefore, none of the 

bootstrap samples include the number 5.  

We compute the sample means for the 100 bootstrap samples. Figure 27 shows the distribution of the 

100 bootstrap samples.  
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Figure 27: Distribution of bootstrap sample means for the bootstrap samples of Example 2.4A 

 

The 0.05 and 0.95 percentiles of the distribution of samples means are 3.0 and 4.5, respectively. The 

bootstrap procedure concludes that the range [3.0,4.5] is a 90% confidence interval for the population 

mean. This is quite a large range: we would like the decrease our uncertaintanty in estimating the 

population mean.  However, we cannot do so by simply increasing the number of bootstrap samples. The 

Bootstrap procedure simply imitates the variance in estimation when observing a sample of 10 

observations from our data source. To produce tighter bounds on the population mean – our original 

sample must include a larger amount of samples. We show that larger datasets produce shorter 

confidence intervals in the following example. 

Example 2.4B – Estimating the variance of the sample mean, when estimating the population mean. 

(continued  - with larger samples): 

We consider a case where we observe 50 measurements from an even die. The observed sample is  

2 3 4 6 2 6 6 4 4 1 2 2 5 3 5 3 5 6 3 5 6 2 4 1 2 3 1 3 6 3 3 4 3 2 5 5 5 1 5 3 5 4 5 4 4 5 1 3 5 5 

The observed sample mean for the 50 observations is 3.7. We produce 100 bootstrap samples, 50 

observations each: 



38 
 

Bootstrap sample 1: 1 4 2 5 6 2 3 3 2 6 5 5 4 5 3 5 1 5 2 4 5 4 6 5 1 4 4 5 5 5 2 5 5 5 1 2 5 6 5 4 2 4 3 4 5 3 4 6 5 3 

Bootstrap sample 2: 3 6 3 5 4 2 6 1 1 3 5 5 6 2 4 2 5 6 4 3 5 2 2 4 1 4 3 2 2 3 6 6 3 3 1 3 6 1 5 3 5 3 2 5 5 4 4 1 6 4 

Bootstrap sample 3: 3 3 5 4 3 1 1 6 3 2 5 4 4 5 4 6 6 5 5 5 4 5 5 5 5 4 3 1 3 5 5 1 4 3 4 1 1 5 3 3 5 5 6 1 5 3 6 5 3 3 

Bootstrap sample 4: 3 2 3 3 1 3 6 6 5 5 5 6 5 3 5 3 3 3 3 5 3 4 5 3 1 3 5 4 6 5 6 6 3 4 5 5 5 3 2 4 3 6 5 4 6 2 2 6 1 3 

⋮ 

Bootstrap sample 100: 5 1 1 3 2 6 5 2 3 1 1 3 3 3 5 4 6 1 4 4 6 6 5 4 5 1 5 1 1 5 3 1 4 3 4 6 5 4 6 2 2 6 5 5 3 5 2 6 4 1 

Figure 28 shows the distribution of sample means, for the 100 bootstrap samples. The 90% central values in the 

distribution are found in the range [3.319,4.02], giving a shorter confidence interval than the one obtained in 

Example 2.4A. 

 

Figure 28: Distribution of bootstrap sample means for the bootstrap samples of Example 2.4B 
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The previous example demonstrated the bootstrap sampling procedure for data with independent 

samples. However, measurements in water quality time-series data are not independent across time, as 

shown in Section 2.1. We proceed to demonstrate a bootstrap sampling procedure for time series data.  

When trying to estimate population parameters by bootstrap, one cannot sample individual observations. 

However, different time periods, which are not overlapping or in high proximity in time, can be considered 

as independent and be sampled with replacement from the data to form makeshift time-series imitating 

the original data. For example – from a year with 52 weeks, sample a new 52-week year by sampling one 

week after another from the original data. A drawback of this approach is that by stitching together weeks 

which are not adjacent from the original data, the bootstrapped time series will be noncontinuous once 

every seven days.  

If the quantity of interest is local in time, e.g., estimate the distribution for the rate of change in the data, 

estimates can be computed over many short terms windows in time and bootstrapped estimates by 

computing samples estimates obtained from the different windows. We show a practical example for a 

time-series bootstrap procedure making use of local estimates across windows.  

 

Example 2.4C – a bootstrap procedure for estimating the distribution of hourly changes in conductivity, 

and testing if the distribution of hourly changes in conductivity has changed across different years:  The 

data for our example is a time series of conductivity measurements, measured throughout the years 2018-

2019  at a sampling location located in an urban water distribution network. We split the dataset into two 

periods – February to December 2018 and February to December 2019. We are interested in testing 

whether the distribution of the hourly rate of change of conductivity differs between the two years: was 

the hourly rate of change of conductivity larger or smaller in 2019 compared to 2018?  

The month of January was excluded from the data due to a different operation scheme in January 2018. 

Figure 29 on the next page, visualizes the data. 
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Figure 29 shows histograms for the distributions of the maximum daily change across the two years. The 
histograms were formed by computing the difference between the maximal and minimal daily 
measurements for each calendrical day in the data. 
 

 
Figure 29: Histogram for the maximum change of conductivity measurements in a day across the two years in the data.  

Our task is to find out if the differences between the two distributions can be explained by sampling 
error alone ( i.e., we were likely to see the same two graphs, with years for labels switched) or not. Our 
approach will consist of sampling 2018-like and 2019-like bootstrap years of data, and comparing the 
bootstrap samples generated from both years. 
  

Year 

[𝜇𝑆/𝑐𝑚] 
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From each of the two years, we sample 1000 bootstrap datasets (years), by sampling 11 months of 14-
day intervals from the data, with replacement (an interval may be sampled several times). Figure 30 shows 
the Cumulative Distribution Function (CDF) for the two sets of bootstrap samples by year. Each graph 
shows the 0.05, median, and 0.95 quantiles, for each value of "maximal daily change in conductivity". The 
figure is interpreted as follows: each time we generate a bootstrap sample for a year, its CDF has a 90% 
chance of passing between the two furthermost curves on each graph.  
On the next page – we compare the two sets of bootstrap samples 
 

 
 

Figure 30: Cumulative distributions functions for the Maximal daily change in Conductivity, across 1000 time-series bootstrap 
samples generated from the datasets shown in Figure 29. The three lines in each year represent the 0.05, median, and 0.95 
quantiles, for the distribution of the daily range of Conductivity, across the bootstrap estimates. 
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Figure 31 plots the two sets of bootstrap distributions, shown in Figure 30,  together on the same graph. 
We see a substantial overlap between the two sets of bootstrap samples. Therefore we conclude that all 
differences in the distribution of the "maximal daily change in conductivity" between the two years may 
be the result of sampling error alone. 

 
Figure 31: Comparison of the two CDF distributions of Figure 30. We see a large overlap between the two sets of bootstrap 
samples, indicating all differences in "maximal daily change in conductivity" between the two years may be the result of 
sampling error alone. 

  

Year 
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2.5 Prediction Models and model error distributions 
Prediction models are used in statistics to associate changes in a dependent variable, usually denoted by 

Y, with a dependent variable, usually denoted by X. Different statistical models have different pros and 

cons – some of the models are very simplistic, and therefore allow higher interpretability of model 

behavior, while others are more complex, at the price of reduced interpretability. 

The Spatial Model methodology, presented in Unit B of this document, will make use of Prediction models 

to predict water quality measurements at a target station, based on the equivalent water quality 

measurements at a source station found upstream. The models presented in unit B will account for the 

(varying) flow time between stations, along with adjustments that need to be made for specific water 

quality data. Since Section 3.5 in unit B will focus on adapting existing prediction methodologies for use 

in the Spatial Model framework, we found it best to include a subsection reviewing these  prediction 

methods. 

In this chapter, we will review three models:  

• The "Constant Shift" model – assuming measurement in Y is similar in distribution to the 

measurements of X, with a shift in distribution values. 

• The linear regression model – assuming a linear relation between X and Y.  

• The kernel regression model – predicting Y given X by observing the behavior of Y for data points 

with similar values of X. 

For each model, we will provide the model equation, explain how prediction is calculated, and briefly 

discuss the pros and cons for each model. At first, the models will be presented on a toy dataset, for better 

clarity of model characteristics. Next, we will review 4 data examples taken from water quality analyzers, 

placed at different locations in a water distribution network. For these examples, we will compare the 

prediction given by the three different models, along with a graphical representation of the distribution 

of prediction errors. Eventually, using the error distribution as a yardstick for abnormality of 

measurements will allow us to detect irregular water quality events in Section 3.5 in Unit B.  
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Example 2.5A – toy dataset for demonsrating different prediction models:  Figure 32 shows the dataset 

used to exemplify the three types of models mentioned before. The dataset consists of 2000 points. 

On the next pages, we will look at the three different models fitted to this data. 

 

Figure 32: Toy dataset for demonstrating different prediction models. 
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The constant shift model: Figure 33 shows the constant shift model fitted to this data. The model equation 

is assumed to be: 

𝑌 = 𝑎 + 𝑋, 

i.e., the distribution of Y's is a shifted version of the distribution of the X's. Such models may be 

appropriate for conductivity measurements between two measurement locations when there is no 

attenuation of measurement values across the water distribution network. For measurements like Total 

and Free CL, or turbidity, it is not reasonable to assume a slope of 1  between two measurement locations. 

Moreover, sensors for these measurements must be calibrated on-site, leading to different  

"response slopes" for the same values of T-CL, F-CL, and Turbidity in the water. The parameter 𝑎 is fitted 

in a robust manner, using 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑎 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑌 − 𝑋), 

i.e. taking the median value of 𝑌 − 𝑋 across all data points. In the example below, we reach 𝑎 = 0.121. 

We see a very poor fit between the model given by the red line and the data. 

 

Figure 33: The "constant shift" model exemplified on the toy data example 
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Figure 34 shows a linear regression model fitted to our example dataset. The linear regression model 

equation is given by: 

𝑌 = 𝑎 + 𝑏𝑋. 

The parameters 𝑎 and 𝑏 are estimated by minimizing the sum of squared distances between points and 

their predictions on the green line. In other words, out of all possible green lines that could be fitted to 

the data, the green line presented in Figure 34 is the one where the sum of square vertical distances 

between data points and their corresponding points one the line (for the same value of X), is the smallest. 

The Fitted line for this data is 𝑌 = −0.1065 +  1.4938𝑋. Graphically, the model fits the data much better, 

and we observe a slipe closer to 1.5 is more appropriate than 1. However, we can still see a slight non-

linearity in the data – for the highest and lowest values of X, the model usually predicts lower values than 

expected.  

There are several ways to extend the linear model to complex relations in data: some possible estimation 

parameters may be robust to outliers, considering the absolute value of errors, instead of square errors; 

other models may consider polynomial model equations such as 𝑌 = 𝑎 + 𝑏𝑋 + 𝑐𝑋2. To allow modeling 

of complex relationships in data, the SM uses non-parametric kernel regression, explained on the next 

page 

 

Figure 34: The linear regression model exemplified on the toy data example 
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A non-parametric model is a statistical model that cannot be put in a closed equation form, with a limited 

number of parameters. For comparison, the last two models we reviewed were parametric, since their 

model equation could be summarized by either one or two parameters. A kernel regression is a 

nonparametric regression model, predicting a value for Y, the dependent variable, using the value X, and 

a selected set of historical data points with X values similar to the one used for prediction. 

Consider the setting where we are given observations (𝑋𝑖 , 𝑌𝑖), 𝑖 = 1, … , 𝑁 and want to predict 𝑌′ for a 

new observation with a given 𝑋 = 𝑋′. We select some domain 𝐷(𝑋′), a valid range over the 𝑋's, and 

compute: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑌′ =
∑ 𝐼(𝑋𝑖 ∈ 𝐷(𝑋′)𝑌𝑖

𝑁
𝑖=1

∑ 𝐼(𝑋𝑖 ∈ 𝐷(𝑋′)𝑁
𝑖=1

, 

where 𝐼(𝑋𝑖 ∈ 𝐷(𝑋′) is an indicator function receiving the value 1 if 𝑋𝑖 is in the domain selected around 

𝑋′, and 0 otherwise. The numerator for the above expression sums overall Y's that are associated with 𝑋s 

in the domain around 𝑋′. The denominator counts how many observations are summed over in the 

numerator. Therefore, the above expression is just a local average of Y's, for all point with X's in the 

domain around X' (as defined by the domain 𝐷(𝑋′) ). Defining the domain 𝐷(𝑋′) is application and data 

specific. For rich data sets, with complex signals, the domain 𝐷(𝑋′) might be very local in terms of X's. For 

small datasets, 𝐷(𝑋′) might consider up to 20-30% of the data, at the cost of simplistic modeling. 

The indicator function 𝐼(𝑋𝑖 ∈ 𝐷(𝑋′)) can also be replaced by a kernel function, 𝐾(𝑋𝑖 , 𝑋′), receiving values 

greater or equal to zero. The model equation then becomes: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑌′ =
∑ 𝐾(𝑋𝑖 , 𝑋′)𝑌𝑖

𝑁
𝑖=1

∑ 𝐾(𝑋𝑖 , 𝑋′)𝑁
𝑖=1

. 

The idea is to replace the unweighted average over the domain including 𝐷(𝑋′) by a distance specific 

weight function. Again, selecting the right kernel function for a model is data and domain-specific. Some 

application may even require that the kernel function be non-homogenous in space, i.e., rely on the values 

of 𝑋′ and 𝑋𝑖 explicitly, and not just through their distance, |𝑋𝑖 − 𝑋′|.  

In the setting encountered by the Spatial Model, we are interested in constructing many models with 

thousands of observations in each. Storing all tens of thousands of data points, for hundreds of models is 

inefficient. Therefore, before model construction, we aggregate observations to bins by X coordinate, as 

explained on the next page.   
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SM Kernel regression, Step I: Kernel regression in the Spatial Model begins by binning observations to 

bins, by X values, as exemplified in Figure 35. Different horizontal bins are represented by the white spaces 

between gray vertical lines, with data points being divided across the different bins. For each bin, we 

compute the median Y value for all observations in the bin. The median values of Y in each bin represented 

by red lines in Figure 35. 

Let (𝑋̃𝑗, 𝑌̃𝑗, 𝑁̃𝑗), 𝑗 = 1, … , 𝐵 represent the 𝑋 value of the 𝑗th bin (by the center point falling in the pan of 

the bin), the median value of 𝑌's for observations in the bin, and the number of observations per bin, for 

bins 1,…,𝐵. In Figure 35, 𝐵 is set to 60. Step II, on the next page, step II of the algorithm will aggregate 

over bin medians to form predictions. 

 

Figure 35: Kernel regression, with binning over X's, step I. Bin median values are represented by red lines in each bin. 
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SM Kernel regression, Step II: The kernel regression model equation is given by the formula: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑌′ =
∑ 𝐾(𝑋̃𝑗, 𝑋′)𝑌̃𝑗

𝑁
𝑗=1

∑ 𝐾(𝑋̃𝑗, 𝑋′)𝑁
𝑗=1

, 

𝑤ℎ𝑒𝑟𝑒 𝐾(𝑋̃𝑗, 𝑋′) = {
𝑁𝑗 , 𝑖𝑓 𝑋̃𝑗 𝒊𝒔 𝑖𝑛 𝑡ℎ𝑒 5% 𝑏𝑖𝑛𝑠 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑡𝑜 𝑋′ 

0, 𝑖𝑓 𝑋̃𝑗 𝒊𝒔𝒏′𝒕 𝑖𝑛 𝑡ℎ𝑒 5% 𝑏𝑖𝑛𝑠 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑡𝑜 𝑋′      
.  

This model equation predicts 𝑌′ by taking a weighted average of the bin representative Y values, of the 

5% of bins closest to 𝑋′ . The number of bins, set to 60, and the threshold for proximity, set to 5%, are 

model parameters to finetuned to the data at hand. Figure 36 shows model predictions for the data. The 

model captures the data well, and predictions are not biased for extreme values of X, as in Figure 34. 

Sections 2.5.1-2.5.4 provide interesting case studies comparing the three model types for real data. In 

Figures 33-36, we maintain a color-coding where red curves are for Constant Shift models, green curves 

are for linear regression, and blue lines are for kernel regression. This color-coding is kept throughout the 

next subsections. 

 

Figure 36: Kernel regression, with binning over X's, step II. Model predictions by weighted averaging of the 5% closest bins are 
given by the blue curve. 
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2.5.1 Example for good model fit, some outliers 
In this example, we fit the Constant Shift, linear regression, and kernel regression models to a dataset 

comparing Turbidity measurements at a source and target station, with water flowing between the two 

stations. The data used for analysis is for a time span of 20 days, with one measurement every 10 minutes. 

Datapoint coordinates in Figure 37 are the hourly median values in the two stations for the same 

calendrical hour. Figure 37 shows the three models presented in this section, fitted to the data. For this 

data, since data points are themselves hourly medians, no additional binning at the kernel regression level 

was performed. We observe all three models to fit the data well, with a slope of 1 (in the constant shift 

model) describing the ratio of turbidity measurements between the two stations.  Some of the 

measurements at 𝑋 = 0.41 and 𝑋 = 0.36 (marked by dashed ellipses) are outliers in Y values, 

representing increased turbidity measurements at the target station. However, despite being outliers, 

these points do not jeopardize model validity, as seen by the green line for the linear model. On the next 

page, we discuss the error distributions for these three models. 

 

 

Figure 37: Three valid models for Turbidity at a source and target station. 

Constant shift 

Linear regression 

Kernel regression 

Outliers 

Outliers 
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Figure 38 shows the (smoothed) error distribution for the three models presented in Figure 37. All three 

models have error distributions in the range [−0.03,0.03] NTU, excluding some outliers. Of the three 

models, The constant shift model fates slightly worse than the other two. 

 

Figure 38: Error distributions for the three models of Figure 37. 

  

[𝑁𝑇𝑈] 

Outliers from previous graph 
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2.5.2 Example for a non-linear relationship in the data 
Figure 39 shows data for turbidity measurements over a timespan of 20 days, with a similar sampling 

resolution and preprocessing as in Section 2.5.1. Again, the data points compare turbidity measurements 

from a source and target location, with water flowing between the two locations. Unlike Figure 37, which 

features a linear relationship between the two stations, Figure 39 shows a highly non-linear relation for 

concurrent turbidity measurements between the two stations. The red line, showing the fitted "Constants 

Shift model" misses the data almost entirely. The green line, showing the fitted linear regression model, 

gives biased predictions for the low and high values of turbidity at the source station, as exemplified in 

the toy example of Figure 34. Only the kernel regression can fit the data correctly. The error distributions 

are compared and discussed on the next page. 

 

Figure 39: Three models for turbidity, with data showing a non-linear relation between source and target stations. 

 
  

Constant shift 

Linear regression 

Kernel regression 
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Figure 40 shows the error distributions for the three models. The majority of the mass for the error of the 
kernel regression model is found in the [−0.03,0.03] range. Other models exhibit wider distributions 
(larger prediction errors), which are also highly skewed, with a right tail. Only the kernel regression model 
provides an adequate fit to the data. 

 
Figure 40: Error distributions for the three models of Figure 39. 

 

  

[𝑁𝑇𝑈] 
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2.5.3 Examples for bad model fit, when using data gathered over a long period 
We examine Free CL measurements data collected over 604 days, at 10 minutes intervals, for two stations 

called Source and Target. In this setting, water flows from the source station to the Target station. Point 

Coordinates in Figure 41 represent hourly medians of measurements for the same hour at both stations. 

The data presented in Figure 41 does not show a clear correlation pattern between the two stations. 

Attempts to fit the three previously discussed models to the data lead to significantly different results. 

The constant shift model, forced to use a slope of "1" passes through the center of the data point cloud; 

however, there is little evidence in the data to suggest a positive correlation between measurements 

gathered at the two sites. The linear regression and kernel regression methods show a slight negative 

correlation between the two sites: this is not a likely result, given the layout of the water distribution 

network. We proceed to examine the error distributions of the different distributions on the next page. 

 

Figure 41: Comparing prediction models for Free CL measurements at a source and target station, over 604 days.  

 
  

Constant shift 

Linear regression 

Kernel regression 
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Figure 42 shows the error distributions for the three models. All three models have the majority of 
prediction errors in the range [−0.2,0.2] mg/L. Using Figure 42, one may erroneously conclude that all 
three models perform "equally well", when in fact the three models perform "equally worse": a span of 
0.4 mg/L encompasses almost the entire range of valid measurements on the Y axis of Figure 41, meaning 
the models presented in both figures perform no better than a  "guess" of the Y value.  
The prediction model using a large time period for training rely on data collected with differing source 
water quality, sensor calibrations, and seasonal effects. Simplistic models, such as predicting the target 
site water quality measurement value by the corresponding source site value, cannot account for these 
effects without additional effort in modeling. While one may seek to extend the simplistic models 
presented in this chapter to account for additional variables, we prefer instead to rely on models trained 
on datasets with a shorter time period, and fewer covariates. These models are easier to analyze and 
diagnose.  The next subsection will review these two sites again, with models trained using 60 days of data 
alone.  

 
Figure 42: Error distributions for the three models of Figure 41. 

 

  

[𝑚𝑔/𝐿] 
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2.5.4 An example resolving the issue raised in 2.5.3 
Figure 43 shows Free-CL measurements for a period of 60 days, for the two stations described in Section 

2.5.3. We observe a clear positive association in the data captured by all three models. The linear and 

kernel regression models relatively agree on the predicted Y values, across the range of possible X values. 

On the other hand, the 'Constant Shift' forced to use a slope of 1 model does not fit the data well: chlorine 

dissipation is linear, when comparing the two stations, but not with a 1:1 ratio. Figure 44 on the next page 

shows the 'Constant Shift' model to have biased predictions, with an error distribution that is not centered 

around 0.  

The problem presented in Section 2.5.3 has been partially solved by reducing the time period of data 

available for model training.  In Unit's B and C we will show better prediction results can be achieved with 

training datasets spanning 14-30 days. 

 

Figure 43: Free CL measurements and models for the two stations described in Section 2.5.4, over a period of 60 days. 
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Figure 44: Error distributions for the three models of Figure 43. 

 

  

[𝑚𝑔/𝐿] 
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2.6  Quiz for Unit A 
1. What is the ACF?  

 

2. Why should measurements be binned when analyzing time series? When is binning mandatory? 

 

 

3. Consider a water measurement time series with no binning of measurements. If the sampling 

resolution were to increase, how would the following values change: 

a. ACF(shift = 0) 

b. ACF(shift = 1 single measurement) 

c. ACF(shift = a number of measurement equivalent to 1 hour) 

 

4. What is the CCF? 

 

5. Why is the shift argument value for which the CCF receives it's maximum interesting? How can 

this value be interpreted? 

 

 

6. What possible types of noise are observed in water quality data, and how are they handled? 

Name three types of noise in the data, and way to counter them. 

 

7. Except Pearson's correlation coefficient, we learned two other correlation measures. How are 

these correlation measures called? Why are these measures preferred for some data types? 

 

8. Compute Kendall's Tau for the following sample of data points: 

{(1,1), (2,2), (3,4), (4,5), (5,3)} 

 

9. Can the bootstrap sample 1,2,4,0,5 be obtained from the original data: 1,2,3,4,5? 

 

10. Our water utility engineer, named Ahab, computed an ACF for a timeseries of conductivity 

measurements. The time series was measured for 1 Year, in a 10 minute resolution, at some 

location. Aaron would like to estimate the sampling error for the values of the ACF. In order to 

do so, he plans to sample 52560 measurements (the equivalent of 1 year) from his original data 

series. Aaron has the following claim: "I can estimate the sampling error of my ACF, across all 

possible shifts, using the bootstrap samples produced in this method!". Jezebel, also working at 

the water utility: "You cannot use the bootstrap technique to estimate  the value of the ACF at 

any possible shift!".Is Ahab correct? Is Jezebel Correct?  

 

11. What types of prediction models were discussed? What are their Pros and Cons?  

 

12. What is the prediction model's error distribution used for? 
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3. Unit B – Algorithmic and Statistical Methodology in the Spatial 

Model. 
Unit B discuss the statistical methodology for the Spatial Model. Section 3.1 provides an introduction to 

the SM methodology, and motivates the construction of Statistical models involving two or more water 

network locations. Sections 3.2-3.5 discuss pair models in depth, with the different subsections focusing 

on flow time estimation, selection of flow regimes, error estimation for flow time estimations and 

predictions for of water quality measurements,  respectively. Sections 3.6-3.7 discuss models for triplets 

of stations. Section 3.8 recaps up on the complete methodology. 

3.1 Introduction to the Spatial Model. 
This subsection motivates the use of flow time estimators, construction of statistical models for the 

relation in water quality measurements between pairs of stations, and introduces the idea of models for 

triplets of stations. 

Water quality sensors in a water distribution network are generally found in key location in the network, 
with flowing between network locations, and several types of measurements gathered at each network 
locations. An illustration of such a water distribution network is shown in Figure 45. 
 

 
Figure 45: An illustration of water quality analyzers located across a city. The city has 5 measurement locations named A-E, with 
time series for conductivity and turbidity measurements depicted above each measurement station. Blue arrows depict the general 
direction of water flow between the different stations. The purpose of the Spatial Model is to model the relation between water 
quality measurements from the same type, across the different stations.  
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The construction of spatial models being with modeling the relationship between the measured time 
series in two connected network nodes, as shown in Figure 46. By modeling the different pairs of sensors 
in the network, we aim to provide good coverage for water quality events. 

 
Figure 46:Spatial Model pair model focus on modeling one pair of measurement locations, with the same measurement type at a 
time. In this figure, we illustrate this concept by focusing on a specific pair of connected stations (or link), out of the different links 
presented in Figure 48.  

 

Our working example for this section, depicted in Figure 47, shows conductivity measurements for 16723 

hours, measured in two network locations. The two locations are connected, and water flows from the 

source station (time series shown in black) to the target station (time series shown in red). The two 

stations show substantial variability in terms of conductivity measurements, with measurements varying 

between 350 to 800 𝜇𝑆/𝑐𝑚. While each station shows substantial variability, the two stations closely 

resemble one another, with the 'red' curve following in motion after the 'black curve'. Consider a water 

engineer monitoring the Conductivity measurements for the target station. Looking at the 'red' curve 

alone, the engineer might be 'surprised' if a the 'red' curve is susceptible to abrupt changes. However, if 

the black curve is known, changes in the 'red' curve  can be foreseen, and the water engineer knows 

changes in the red curve are not due to a water quality event happening in the network between the two 

stations 
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Figure 47: Conductivity measurements across 16723 hours *697 days), in two measurement locations – a source station (black) 
and a target station (red). Water flows from the source station to the target station. 

Figure 48 shows the CCF for the two series depicted in Figure 47. The CCF shows a distinct peak at a lag of 

three hours, hinting the flow time between stations. For the purpose of this example, we consider the 

flow time between the two stations to be three hours and the flow time to be constant across all times. 

Next, we show how the flow time estimates can be used to improve predictions of water quality 

measurements at the target node.  

 

Figure 48:The CCF for the two conductivity time series presented in Figure 47. The CCF shows a distinct maximum at LAG = 3 Hours.  
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Figure 49 shows two scatter plots. The first scatter plots, on the left, show the bi-variate distribution of 

conductivity measurements taken at the two stations at the same time. The second plot, on the right, 

shows the bi-variate distribution of conductivity measurements taken with a time gap of three hours 

between source and target stations, i.e., a pair of points (X,Y) is taken with X being the measurement 

station at time T, and Y being the measurement at the target station at time T + 3 hours. The graph on the 

right, accounting for the flow-time between stations, shows a substantially better correlation between 

the two stations. Table 3, below Figure 49, shows the sample correlations in the two graphs, using our 

three measures of correlation, discussed in Section 2.3. We can see that correlations that account for the 

flow time between network locations (based on the subfigure on the right of Figure 49) are higher than 

"raw" correlations (based on the subfigure on the left of Figure 49). 

 

 

Figure 49: Plotting the hourly median conductivity measurements for the two time-series presented in Figure 45. Points on the left 
plot show the hourly median measurements, for the same hour at both stations, while the right plot shows hourly median 
measurements with a lag time of three hours: for example, a point whose X coordinate is the median conductivity value measured 
between 07:00-08:00 AM at the source station, (at some specific day), had a Y coordinate corresponding to the hourly median 
conductivity at target station, for 10:00-11:00 AM at the same day. 

Table 3: Correlation statistics, for the two subfigures presented in Figure 47 

 No lag adjustment With lag adjustment, lag = 3 Hours 

Pearson 0.953 0.961 

Spearman 0.948 0.957 

Kendall's 𝜏 0.870 0.886 

 

𝑁𝑜 𝐿𝑎𝑔 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝐿𝑎𝑔 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑏𝑦 𝐿𝐴𝐺 = 3 𝐻𝑜𝑢𝑟𝑠 
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This example motivates the following methodology: 

• Define the list of pairs in the network which exhibit meaningful correlations. 

• Find flow time estimates for each pair defined. Flow time estimates should be allowed to vary 
across time of the day and days of the week (unlike in the above example). 

• For each pair in the network, model the relationship in measurements between source and target 
stations 

• While monitoring the network, continuously predict the measurement for the target node 
measurements in each pair based on the source station measurements. If measurements deviate 
from their predictions for a substantial amount of time, provide a notification. 

 
 
The next chapters will flesh out this high-level methodology, and provide examples and case studies for 
its application. 
The Spatial Model also features triplets: higher-level models that aggregate over the deviations 
observed in two sensor pairs. Figure 50 depicts the different kinds of triplets that can be constructed using 
pairs, with arrows depicting the direction of water flow. Model for triplets of sensors are discussed in 
subsections 3.6-3.7. 

 
Figure 50: Three possible types of sensor triplets that can be found in a water distribution network. Arrow directions depict the 
flow direction of the water. 

  

1 

2 

3 

1 

2 3 Line Fork 

Reversed Fork 

1 2 

3 



64 
 

3.2 Pair model – definitions and flow time estimation 
This section describes the methodology for estimation of flow times between two network locations, the 
notion of flow regimes, and how flow time estimates are obtained for several flow regimes. 
 
We start by providing a simple estimator for flow time, when flow time is fixed across all dates and times. 
We assume the underlying signal for water quality measurements is a continuous function in time. Values 

for the source station are given by 𝑦(1)(𝑡) , and values for the target station are given by 𝑦(2)(𝑡), with 
0 ≤ 𝑡 ≤ 𝑇. We assume that the measurements in source and target station are associated via the 
following relationship: 
 

𝑦(1)(𝑡) = 𝑦(2)(𝑓(𝑡)), 

meaning measurements appearing at time 𝑡 at the source station appear at a later time, 𝑓(𝑡), at the target 

station. The actual values of 𝑦(1)(𝑡) and 𝑦(2)(𝑡) are not observed directly. Instead, the observed 
quantities are averages of the above time series across time. Our discretization for the time domain is 
such that quantities are observed at equally space points in time, 𝑡 = Δ, 2Δ, 3Δ … , 𝑇 − Δ, 𝑇. The observed 

measurements are indexed via 𝑖, are will be referred to as 𝑦𝑖
(1)

, 𝑦𝑖
(2)

, with 𝑖 receiving values in the range 

1,2, … ,
𝑇

Δ
. 

The relationship between 𝑦(1), 𝑦(2) to 𝑦𝑖
(1)

, 𝑦𝑖
(2)

 is given by: 

 

𝑦𝑖
(1)

=
1

Δ
∫ 𝑦(1)(𝑢)𝑑𝑢

Δ⋅𝑖

Δ⋅(𝑖−1)

+ 𝜀𝑖
(1)

, 

    𝑦𝑖
(2)

=
1

Δ
∫ 𝑦(2)(𝑢)𝑑𝑢

Δ⋅𝑖

Δ⋅(𝑖−1)

+ 𝜀𝑖
(2)

, 

with 𝜀𝑖
(1)

, 𝜀𝑖
(2)

 describing random measurement noise.  

The parameter of interest is 𝛿 = 𝑓(𝑡) − 𝑡, describing the flow time between the two stations. 
 

3.2.1 Estimating 𝛿 
 

Let 𝑦(𝑎):(𝑏)
(1)

, 𝑦(𝑎):(𝑏)
(2)

 denote the subvectors from time index a to time index b for the two series. 

We will construct a score function estimating how well does a candidate lag time, e.g. 𝑢 time units, do in 

explaining the association between 𝑦𝑖
(1)

 and 𝑦𝑖
(2)

, i.e., how reasonable it is for the actual lag time to be a 

value of 𝑢. Our idea for the score function is the following. We will take two windows of measurements, 
each of which is  𝑤 measurements in size, and their centers 𝑢 measurements apart. We will slide the pair 
of windows across the data, and for each pair of locations, will compute a correlation score, e.g. the 
Pearson correlation coefficient.  The score function for the candidate lag time 𝑢 will be the sum of Pearson 
coefficients in all window pairs. Figure 51 depicts the pair of windows, 𝑤 measurements in size, and 𝑢 
measurements apart, positioned over the two time-series.  
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Figure 51: Two times series of measurements, the blue series is the source stations, and the red series is the target stations. In 
order to compute the rhoCCF function for a shift u: A) Two windows of measurements, w measurements in size and u 
measurements apart are "slid" across the data,  B) for each location point, the correlation between two subseries is computed C) 
correlation subseries are aggregated. 

 
Our score function is therefore defined to be: 

𝜌𝐶𝐶𝐹(𝑢) =
1

𝑁
∑ 𝜌̂ (𝒚(𝒊−𝒘/𝟐):(𝒊+𝒘/𝟐)

(𝟏)
, 𝒚(𝒊−𝒘/𝟐+𝒖):(𝒊+𝒘/𝟐+𝒖)

(𝟐)
)

𝑁−𝑤/2

𝑖=
𝑤
2

+1,

𝑎𝑛𝑑 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 𝑒𝑥𝑖𝑠𝑡𝑠

, 

Where 𝒚(𝒊−𝒘/𝟐):(𝒊+𝒘/𝟐)
(𝟏)

 represents the w-long subseries of measurements in the first time series, from 

index 𝑖 −
𝑤

2
 to 𝑖 +

𝑤

2
; and 𝒚(𝒊−𝒘/𝟐+𝒖):(𝒊+𝒘/𝟐+𝒖)

(𝟐)
 represents the w-long subseries of measurements in the 

second time series, from index 𝑖 −
𝑤

2
+ 𝑢 to 𝑖 +

𝑤

2
+ 𝑢 . 

 
If we draw the function 𝜌𝐶𝐶𝐹 as a function of 𝑢 (Figure 52), we hope to find a maximum in the function. 
The X coordinate for the maximum will give the flow-time that best explains the shift in the two time-
series: 
 

 
Figure 52: Visualization of the score function 

 

We recall that the units of 𝑢 are given in time measurements, therefore our approximated lag, 𝛿̂, is found 
by multiplying the X-coordinate for the maximum by the resolution constant: 
 

𝛿̂ = Δ ⋅ arg max
𝑢

𝜌𝐶𝐶𝐹 (𝑢) . 

𝑤 

𝑤 

𝑢 
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We note that since correlations are valued between −1 and 1, an outlier measurement can damage 
only 𝑤 windows it participates in. Therefore, its damage is bounded. 
 
The above method works well when flow-time is approximately constant across all time of day. Generally, 
there is reason to believe this is not the case: flow times change across days and times of the day. We 
therefore suggest a semi-automatic method: the user selects a partition for days of the week and times 
of the day, so that the flow time in each part of the partition is approximately constant. Then, flow times 
are approximated in each flow regime. For example, Figure 53 shows such a partition for Figure 51, with 
orange and blue backgrounds, dividing days to a day flow-regime and a night flow-regime. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Once such a partitioning is defined, flow times are approximated in each flow regime by summing only 

over the window pairs that below to the flow regime. Regime identity is defined by the center of the 

window of measurements for the target station. Figure 54 shows an illustration of three score functions, 

for three regimes, with each score function receiving its maximum at a different X point. 

 

 

Figure 54: Visual representation for the Spatial Model score function. 

Mathematically, the estimated delay time for regime ℎ, denoted by 𝛿̂ℎ, is given by: 

𝛿̂ℎ = Δ ⋅ arg max
𝑢

𝜌𝐶𝐶𝐹ℎ (𝑢), 

Where 𝜌𝐶𝐶𝐹ℎ  is a version of 𝜌𝐶𝐶𝐹 that sums correlation scores only over window pairs belonging to 
regime ℎ. 

𝛿3/Δ 𝛿1/Δ 

𝑢 𝑢 𝑢 

𝛿2/Δ 

 

𝑆
𝑐𝑜

𝑟𝑒
 

𝑆
𝑐𝑜

𝑟𝑒
 

𝑆
𝑐𝑜

𝑟𝑒
 

𝑅𝑒𝑔𝑖𝑚𝑒 1 𝑅𝑒𝑔𝑖𝑚𝑒 2 𝑅𝑒𝑔𝑖𝑚𝑒 3 

Figure 53: A partitioning of Figure HHH to different flow regimes. Flow regimes are depicted by background color.  In this Figure 
the partitioning is to day and night regimes. 
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Constructing a partition of the days of the week and times of the day so that flow times can be estimated 
is a network-dependent and site-dependent task, and is the subject discussed in Section 3.3. 
 
In terms of the correlation function used, we've found that the cross-covariance function, over ranks of 
observations, works best in most cases. The value of 𝑤 is usually taken to be the number of measurements 
corresponding to 60-90 minutes (with 90 minutes taken for more noisy sensors). For low energy sensors, 
the measure only once every 15 minutes, we take the 𝑤 to be the number of measurements that 
corresponds to 120-150 minutes.  
 
In terms of measurements that should be used: We've found the conductivity is the most reliable in terms 
of flow time estimation, followed by redox, and then pH. Turbidity and Free CL measurements are 
generally not reliable for flow time estimation. 
 
The remainder of this section discuss real life examples of score function charts, and how they can be 
viewed and analyzed. 
 

3.2.2 Real data examples for score functions 
Figures 55 and 56 show two examples for regime score functions by regimes, for two spatial model pairs 

based on Conductivity measurements. We observe see that the maxima in each figure, across the 

different flow regimes, is obtained at different X-locations, corresponding to different estimated flow 

times. Figure 55 and 56 show very distinct peaks for many of the different flow regimes (except Friday 

evening and Saturday morning, which have relatively limited water flows), and are given here as a 

yardstick for score functions of a model fitted correctly to the data. 
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Figure 55: An example for flow regime score functions, for a Spatial Model pair connecting two stations in the same pressure 
zone. Flow time estimation is based on Conductivity measurements. 
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Figure 56: A second example for flow regime score functions, for a Spatial Model pair connecting two stations in the same 
pressure zone. Flow time estimation is based on Conductivity measurements. 

Figures 57 and 58 show the score functions for the links depicted in Figure 55 and 56, respectively, with 
score function for several measurements depicted together. Score functions were normalized so that the 
maximum score value in each function is normalized to 1. In Figure 57, we observe Conductivity and Redox 
measurements to give similar flow time estimates; the maxima across different subplots is found in the 
same X location for Conductivity and Redox measurements. Generally, Conductivity gives the most distinct 
peaks in the data. Score functions computed based on Free Chlorine are the most noisy, and are found in 
the least agreement with other functions. In Figure 58, Conductivity and pH also relatively agree in 
estimated flow times. 
 
Additional examples for score functions, and comparisons between score functions obtained using 
different measurements are found in Appendix A.1. 



70 
 

 
Figure 57: Score functions for Conductivity, Redox, pH and Free Chlorine measurements, for the pair model presented in Figure 
55. Score functions were normalized to have a joint maximum value of 1. 
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Figure 58: Score functions for Conductivity, pH and Free Chlorine measurements, for the pair model presented in Figure 56. Score 
functions were normalized to have a joint maximum value of 1. 
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3.3 Selecting flow regimes  
In Section 3.2, we reviewed the SM methodology for flow time estimation, given a fixed partition of 

measurement times into different flow regimes. We presented a methodology that allows the user to 

estimate a representative flow time for each flow regime. This section discusses how flow regimes are 

selected. 

In order to find a suitable partition of the dates and times to flow regimes, we use an additional flow 

meter measurement found inside the network, ideally in a central location, or in the entrance to the 

network. The major assumption is the times of low and high flow identified using the flow meter are 

similar to the times of low and high flow in the modeled link.  

As a motivating example, we view Figure 59, showing the median, 10% percentile and 90% percentile of 

hourly flow, in a major water distribution network in Israel. The figure shows the distribution of flow time, 

conditioned on the time of the day, day of the week, and season of the year. We notice the values of flow 

may substantially vary, from values of 1000 𝑚3/ℎ and up to 5500 𝑚3/ℎ. However, when looking at the 

distribution of flow for a specific type of day and time of the day, the variance in hourly flow values is 

substantially lower. This motivates us to "breakdown" the time of the day, and hour of the week, to 

different regimes based on different partitions, so that the distribution of flow with-in each flow-regime 

is with a smaller span of values.  

We continue after Figure 59 with our working example for this section. 
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Figure 59: Motivating example - Median, 10% and 90% percentiles for flow, in a flow meter located in a water distribution 
network, for different hour of the day, days of the week and Seasons of the Year. The flow meter is located in Israel, and Seasons 
are defined by the daylight saving time. Day 1 is Sunday.  
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The data for our working example for this section is shown on Figure 60. Figure 60 shows the distribution 

of hourly flow time, by the different hours of the day. The summary statistics plotted are the median 

hourly flow, the 10% percentile and the 90% percentile. Different times of the year and days of the week 

are disregarded in this graph.  

Next, we view the distribution of flow time by the hour of the day and the day of the week, on Figure 61. 

The plot shows the variance of flow times for each hour of the day is substantially reduced, compared to 

the variance of hourly flows (within each hour) on Figure 60. This can be seen by the range between the 

two gray lines in each hour. 

We continue partitioning our data by the seasons of the year. Figure 62 shows the distribution of hourly 

flow times by the hour of the day, day of the week and season of the year. The season is the year is defined 

by the use of daylight-saving time in the location of the flow meter. We notice there are significant 

differences in the distribution of flow times between the two seasons. We also notice the gap between 

gray lines, marking the 10% and 90% percentiles of hourly flow values, is substantially smaller than the 

gap we originally started with on Figure 60. Our discussion of the working example continues after Figure 

62. 

 

 

Figure 60: Working Example -Median, 10% and 90% percentiles for flow, in a flow meter located in a water distribution network, 
for different hour of the day.  
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Figure 61: Working Example (continued) -Median, 10% and 90% percentiles for flow, in a flow meter located in a water 
distribution network, for different hour of the day and days of the week. Day 1 is Sunday. 
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Figure 62: Working Example (continued) -Median, 10% and 90% percentiles for flow, in a flow meter located in a water 
distribution network, for different hour of the day and days of the week and seasons of the year. The flow meter is located in 

Israel, and Seasons are defined by the daylight saving time. Day 1 is Sunday. 

 

Next, we can define flow regimes by observing adjacent times and dates which have similar flow values. 

For example, we can define "Summer-midweek-day" to be the flow regime with summer days , which are 

also Sunday-Thursday, and hours 8AM to 23PM. Similarly, "Winter-midweek-day" may be defined for 

Winter days. "Summer-midweek-night" and "Winter-midweek-night" may be defined for the remaining 

hours of the day. For Friday and Saturday, different regimes could be defined based on the hourly flow 

values. 
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For this example, partitioning measurement times by three variables (time of the day, day of the week 

and season of the year) was sufficient in order to achieve well defined flow regimes (small variation of 

flow with-in each regime). Figure 62 shows substantially lower values of conditional variance compared 

to Figure 60. However, this may not always be the case: it could be that partitioning measurement times 

by the above three variables may not lead to lower conditional variances of hourly flows. For these cases 

we suggest the following guidelines: 

• Draws figures such as 59-62 for your flow data. See if the variation in hourly flow values decreases 

as more variables are added into the analysis. 

• Variables which are not helpful, i.e., do not decrease the variation in flow time, should generally 

be disregarded when selecting the flow regimes. 

• Find additional variables that may be indicative of the flow in the network. This includes 

operational variables such as the states of pumps, levers and the source of water used (if more 

than one source is available). As an example, see the definition of network regimes at the start of 

unit C, and Sections 4.2.2-4.2.3. 

• For the above water distribution network, positioned in Israel, Friday and Saturday were known 

a-priori to be substantially different from the other days of the week. If you know of a different 

time of the day, or day of the week, that behaves substantially different from other times, use an 

indicator variable to identify these times. 

An important point to note, is that as more flow regimes are defined for the data, less data points are 

available in each regime, thus making flow time estimation harder. We generally suggest at least one 

month of data in each flow regime, in order to have good estimation of flow times, along with the ability 

to use the estimation of the sampling error as detailed in the next section. 
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3.4 Estimating the sampling error in flow-time estimation 
 

When analyzing flow-time estimates using the Spatial Model, we are also interested in estimates for the 

sampling error of estimators, i.e., if data was sampled from a slighlty different time period, how would 

the flow-time estimates change. We utilize a resampling procedure in order to generate our error 

estimate. 

Step I- generating several "folds" of the data: We partition the different weeks of the time line into 

several groups, e.g. 7, in a cyclical manner. Let 𝑁𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠  denote the number of week groups. Figure 63 

shows such a partition of the time line. We than compute our flow time estimators 𝑁𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠  times, by 

each time removing one of the week groups from the data. At the end of this step, each flow regime has 

𝑁𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠  estimated flow times, each computed with 
1

𝑁𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠
 of the data removed. 

 

 

 

 

Step II- compute error estimates: for each of the flow regimes, we compute the InterQuantile Range (IQR) 

for the 𝑁𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠  flow estimates. The IQR is defined to be the distance between the 3rd quartile and the 

1st quartile. Our error estimate is half the IQR: it is the distance from the center of the distribution of flow 

time estimates in which you find the central 50% of estimates. 

The above resampling scheme uses a time period of a week as its basic block. This scheme was chosen so 

that autocorrelation of water quality time series is taken into consideration as discussed in Section 2.4.  

We note that by using too few folds, flow time estimates will become too noisy compared to the original 

estimates. By using too many folds, the flow time estimates in each fold will be effectively computed using 

the same data using for the original estimate, and therefore will be non-informative. We suggest to set 

𝑁𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠  by seeking to estimate "how much will flow-time estimates vary if another 𝟏/𝑵𝒑𝒂𝒓𝒕𝒊𝒕𝒊𝒐𝒏 of 

the data were sampled?". 

Figure 64 show the score functions for 7 different data-folds, for the data and score functions depicted in 

Figure 56. Each of the 7 different curves, depicts a score function computed after removing 1/7 of the 

data. Vertical lines represent the estimated flow times, for each fold of the data, for each flow regime. 

Different flow-time estimates obtained for the different folds in each flow regime are found in relatively 

good agreement. 

 

Additional graphs showing score function for cross-validation estimates of flow times are found in 

appendix A.2. 

 
 

Figure 63: A visualization of a timeline with a parititon of weeks into 7 different subgroups. 
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Figure 64: Score functions for 7 data folds, for the data and score functions depicted in Figure 56, for an SM model estimating 
flow time between two network locations using conductivity measurements. Different colors represent score functions with 
different week groups removed. Vertical lines mark the flow-times with maximal score values in each fold of the data. 
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3.5 Pair Model – Prediction and Monitoring 
This section discusses how prediction models are built for SM pair objects, and how prediction models are 

used for monitoring. Construcion of prediciton models is discussed in Section 3.5.1, and monitoring is 

discussed in 3.5.2. 

 

3.5.1 Construction of prediction models 
The first step in construction of prediction models is the construction of a training set according to the 

following steps 

Step I: for a preset period of time, e.g. most recent 30 days prior to model construction, collect all the 

times for which the target node has measurements. We denote times in which target station 

measurements were available by 𝑡1, 𝑡2 , … , 𝑡𝑁 . 

Let 𝛿̂(𝑡) be the estimated flow time, for water arriving to the target station at time 𝑡. For example, water 

arriving at time 𝑡1 at the target station passed the source station at time 𝑡1 − 𝛿̂(𝑡1).  Let 𝑦(1)(𝑡) and 

𝑦(2)(𝑡) represent water quality measurements at the source and target station, respectively. 

Step II: create a dataset with the entries: 

(𝑦(1) (𝑡1 − 𝛿̂(𝑡1)) , 𝑦(2)(𝑡1)) 

(𝑦(1) (𝑡2 − 𝛿̂(𝑡2)) , 𝑦(2)(𝑡2)) 

… 

(𝑦(1) (𝑡𝑁 − 𝛿̂(𝑡𝑁)) , 𝑦(2)(𝑡𝑁)) 

The values of  𝑦(1)(𝑡) and 𝑦(2)(𝑡) are given by median time bin values, as explained in Sections 2.1-2.2. If 

a source value 𝑦(1) (𝑡𝑖 − 𝛿̂(𝑡𝑖)) is not available, (either due to missing data, fixed data, or data out of 

value limits) then the ith point is removed from the data. 

The values of the form 𝑦(1) (𝑡𝑖 − 𝛿̂(𝑡𝑖)), for 𝑖 = 1, … , 𝑁, will be known as the flow-time adjusted source 

values. 

We proceed with model construction. 

Step III: construct kernel regression models for the training set, using a kernel regression (Section 2.5), 

with a predefined number of bins and kernel size.  

 

Step IV: for each data point, computed its predicted value, 𝑦̂(2)(𝑡𝑖), 𝑓𝑜𝑟 𝑖 = 1, … , 𝑁. Compute also the 

residuals: 

𝑒𝑖 = 𝑦(2)(𝑡𝑖) −  𝑦̂(2)(𝑡𝑖), 𝑖 = 1, … , 𝑁 
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The residuals will be used for monitoring and event detection in Section 3.5.2. 

The above model is a prediction model for all flow regimes, with the variation in flow-time only taken into 

consideration when selecting the X-coordinate values for the training set. Empirically, we have found 

constructing different prediction models for each flow-regime leads to lower prediction accuracy, 

especially in flow-regimes which span relatively short time span, e.g. weekend regimes. 

Figure 65 shows three graphs that are used in the diagnostic analysis of SM pair object prediction models. 

The three graphs, from left to right, are: A source by target graph, showing the values of 𝑦(1) (𝑡𝑖 − 𝛿̂(𝑡𝑖)) 

in the source station against the values of    𝑦(2)(𝑡𝑖) in the target stations, for different times (by values 

of 𝑡𝑖; A histogram of prediction errors; A scatter plot of prediction values vs. actual values measured. The 

three Graphs in Figure 65 are shown for a prediction model for conductivity measurements, and show a 

model with good fit to the data. Additional examples that can be used as yardsticks, along with examples 

for a bad model fit, are shown in Section 4.8. 

 

 

Figure 65: Diagnostic graphs for a pair prediction model. Left: Comparison of Target measurements, flow time adjusted flow 
measurements. Center: Histogram of prediction errors. Right: Scatterplot comparing Target station predicted measurements, 
against their actual measured values. 
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Figure 66 compares shows an Actual vs. Predicted graph for two models – the left model taken flow-time 

into consideration. The model on the right uses 𝛿̂(𝑡) ≡ 0 in model estimation. A better fit is achieved 
when considering flow times in model construction. 

 
Figure 66: Two "Actual vs. Predicted" scatter plots for a model predicting target station conductivity values based on source 
conductivity values. The left plot show uses flow-time estimates in model construction. The right plot is for a model assuming the 
flow-time is identically zero at all times. 

 

3.5.2 Monitoring target station measurements using prediciton models. 
We explain how SM pair objects prediction models can be used for detecting water quality events in the 

target node stations. Our main idea is the following:  

We continuously predict target node water quality measurements based on the source values. If 

prediction errors are irregularly large for a prolonged period of time, we need to notify the operator. 

Specifically, event detection happens using the following procedure: 

Step I: From the empirical distribution of 𝑒𝑖's (prediction errors), remove the most recent 5% of errors. 

Sort the distribution of errors from smallest to largest. Denote the sorted residuals by 

𝑒(1), 𝑒(2), … , 𝑒(0.95⋅𝑁), assuming for simplicity 0.95 ⋅ 𝑁 is an integer. 

Step II: Find an interval [𝐿, 𝑈] holding the  1 − 𝛼𝐿𝑜𝑤𝑒𝑟 − 𝛼𝑈𝑝𝑝𝑒𝑟 central values in the distribution of errors 

by computing: 𝐿 = 𝑒(𝛼𝐿𝑜𝑤𝑒𝑟⋅0.95⋅𝑁) ; 𝑈 =  𝑒
((1−𝛼𝑈𝑝𝑝𝑒𝑟)⋅0.95⋅𝑁)

. 

Step III: For a size 𝑀 defined by the user as the minimum size for half the prediction interval, set: 

𝐿 ← min(𝐿, −𝑀) 

𝑈 ← max (𝑈, 𝑀) 

By default, 𝑀 is set to be 5% of the user limits for the variable. 

Step IV: Compute in addition a set of "soft limits", by computing: 

𝐿′ ← 𝐿 − 𝑀′ 

𝑈′ ← 𝑈 + M′ 
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Where 𝑀′ is set to be 5% of the range between statistical limits for the variable.  

Step V: Form a prediction interval using  [𝑦̂(2)(𝑡) − 𝐿′, 𝑦̂(2)(𝑡) + 𝑈′] 

Step VI: Check if 𝑦(2)(𝑡) is found outside the range [𝑦̂(2)(𝑡) − 𝐿′, 𝑦̂(2)(𝑡) + 𝑈′]. 

The system performs steps III-VI continuously. If 𝑦(2)(𝑡) is found irregular using step VI for period larger 

than a set delay time, e.g., 30 minutes, than a Spatial Model limits violation alarm is raised.  

The filtration of the 10% most recent prediction errors is performed so that a water quality event will not 

"contaminate" the distribution of prediction errors used to declare an event. See Section 4.8.9 for an 

example demonstrating the importance of this filtration. 

The next example illustrates why the requirement that the length of prediction intervals is no more than 

a minimal size is needed. Figure 67 shows the distribution of prediction intervals sizes (𝑈 − 𝐿), for a model 

predicting Free Chlorine in a target node based on a Free chlorine measurements in the source node, for 

1 month of data (one observation taken every 10 minutes). The median prediction interval length is 

around 0.1 mg/L. This indicates that for a vast proportion of times, a decrease in F-CL measurements that 

is less than 0.05 in size compared to the predicted value, will result in the system declaring the drop in F-

CL as abnormal. However, we know that such a drop in F-CL is commonly experienced in water distribution 

systems with a base line value of 0.4 mg/L F-CL (as is the case here). Hence, we require that the difference 

in Spatial Model limits in no less than 10% of the user limits, and add an additional "grace period" using 

the above soft limits (step IV in the above algorithm). 

 
Figure 67: Distribution of prediction interval lengths, for a model predicting Free Chlorine measurements in a target station 
based on source values, when prediction interval length is not required to be of a minimum size. Measurements taken at 10 
minutes intervals, across 1 month.  

[
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3.6 Triplets – definitions and types of triplets 
In this section, we motivate the use of statistical models combining water quality measurements from 

three stations in order to detect water quality events. Figure 68 shows the different types of triplet models 

that can be constructed in the Spatial Model: 

 

Figure 68: (Copy of Figure 50) Three possible types of sensor triplets that can be found in a water distribution network. Arrow 
directions depict the flow direction of the water. 

We provide several motivating examples, demonstrating cases in which triplet models may be more 

sensitive to detect abnormalities in water quality events: 

• A water quality event starting after the first node in a Fork triplet – As an example, we consider 

a setting where a water quality event with a relatively small footprint on water quality 

measurements takes place at a fork triplet, with the origin of the event located immediately after 

the source station (station number 1 in the fork triplet on Figure 68). The water quality event does 

not affect station 1, but it is measured in stations 2 and 3. If the water quality event has little 

effect on the gathered water quality measurements, it is possible the SM pair models alone will 

not detect the event. Since Prediction errors in both stations 2 and 3 will be irregular and in the 

same direction, we suggest constructing a model that monitors for water quality events in stations 

2 and 3 simultaneously.  

• A case detecting calibration is needed in a line triplet– Consider a line triplet of Free- Chlorine 

sensors showing the values 0.4 mg/L, 0.2 mg/L, and 0.4 mg/L, for stations 1,2, and 3, respectively. 

These values hint that at least one of the stations 2 or 3 are not calibrated properly since Free-

Chlorine can only dissipate as water travels into the network. Constructing a triplet model can 

detect irregularities in these values. 

1 

2 

3 

1 

2 3 Line Fork 

Reversed Fork 

1 2 
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We wish to motivate our detection method for sensor triplets. As an example of a fork triplet, we show 
the hourly median pH measurements for three stations in Figure 69, across 2500 hours (over 100 days). 
Station 1 (the source of the triplet) is shown in black. Station 2, the middle station, is shown in red. Station 
3, the final station in the line triplet, is shown in blue. The three-time series are highly correlated. We 
continue the example on the next page. 

 
Figure 69: Three pH time series, across 2500 hours, for three stations in a line triplet. pH measurements are hourly medians. 
Stations 1,2 and 3 are shown in black, red, and blue, respectively. 
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Figure 70 shows the bi-variate distribution of inter-station differences, with and without an adjustment 
for flow time. The X axis in each scatterplot shows the difference in pH measurements between stations 
1 and 2. The Y axis in each scatterplot shows the difference in pH measurements between stations 2 and 
3. Each point represents a joint hourly measurements for the three stations. We observe the within-pair 
deviations in values to be highly correlated across different times. If the joint value of both within-pair 
deviations is abnormal, a human operator should be notified of the irregularity. 

 
Figure 70: Scatterplots for the differences in pH measurements, for each pair of sensors, for the line triplet shown in Figure 
69.The left figure is shown without adjustment for flowtime, while the right figure adjusts for flow time using the method 
presented in sections 3.2-3.3. 

Flow time has to be accounted for when monitoring triplets. However, due to the differences in geometry 

between the different triplet types,  adjustments for flow-times vary. The remainder of this section 

discusses which how flow times are encountered for. This will result in us monitoring a set of sensor 

values measured at the three triplet stations at different times. Section 3.7 discuss how the sensor 

measurements from the three network locations at different times are combined in order to detect 

abnormal water quality events. 

 

In section 3.2, we defined 𝛿(𝑡) as the time it took water from station 1 to arrive to station 2 at time 𝑡: 

𝑦(2)(𝑡) = 𝑦(1)(𝑡 − 𝛿(𝑡)). 

Similarly, we can define 𝛿′(𝑡) as the time it took water from station 1 at time 𝑡 to reach station 2: 

𝑦(2)(𝑡 + 𝛿′(𝑡)) = 𝑦(1)(𝑡). 
The functions 𝛿(𝑡) and 𝛿′(𝑡) are obviously related, however discussing the relation is beyond the scope 
of this section. However, our suggested estimator in Section 3.2.1 is built for estimating 𝛿(𝑡). In order to 
estimate 𝛿′(𝑡), we run the algorithm described in 3.2.1, but use the source station for the regime identity. 
Since triplets involve two pairs of stations, we will use a subscript to denote the pair identity for delay 
time functions: for example, 𝛿2→3(𝑡)  and   𝛿′2→3(𝑡) will be used to denote the flow time for water arriving 
from station 2 to station 3 at time 𝑡, and the flow time for water leaving station 2 at time 𝑡 (and heading 
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to station 3), respectively. Similarly, the notations 𝛿̂2→3(𝑡) and 𝛿̂′2→3(𝑡) will be used to denote the 
estimators for the above delay times, respectively. 
 
Table 4 shows the different time adjustments used when monitoring different triplet types. We now 
survey this table in detail. The Fork-out triplet has two operation modes, meaning over-all 4 triplet flow 
time adjustment methods are discussed. In the first three triplet types, a station monitored at time 𝑡 
denotes a station monitored at the current time, i.e. the wall time, unless stated otherwise. For the 
"source is pivot" mode of the fork-out triplet, time 𝑡 denotes a past time. 
 
Table 4: Monitored time points for different triplet types 

Triplet type Stations setting time time at station 1 time at station 2 time at station 3 

Line 3 𝑡 − 𝛿̂2→3(𝑡) − 

𝛿̂1→2 (𝑡 − 𝛿̂2→3(𝑡)) 

𝑡 − 𝛿̂2→3(𝑡) 𝑡 
Wall time 

Fork-in 3 𝑡 − 𝛿̂1→3(𝑡) 𝑡 − 𝛿̂2→3(𝑡) 𝑡 
Wall time 

Fork-out 2,3 𝑡 − 𝛿̂1→2(𝑡), 

 𝑡 − 𝛿̂1→3(𝑡)  

𝑡 
Wall time 

𝑡 
Wall time 

Fork-out (Is Pivot) 1 𝑡 (not wall time) 𝑡 + 𝛿̂1→2
′ (𝑡) 𝑡 + 𝛿̂1→3

′ (𝑡) 
 
For monitoring, we wish to follow the same "drop of water" across the network, as it passes different 
locations at different times. For monitoring a line triplet (line 1 table 4), the last station appearing in the 
water flow is station 3, which as monitored at the wall time, time 𝑡. Station 2 is the previous station in the 

water flow. This station, is monitored at time 𝑡 − 𝛿̂2→3(𝑡), which is the estimated wall time, in which 
water that left station 2 later arrived at station 3 at time 𝑡. Similarly, Station 1 is monitored at time 𝑡 −

𝛿̂2→3(𝑡) − 𝛿̂1→2 (𝑡 − 𝛿̂2→3(𝑡)), which is the estimated wall time in which water the left station 1 later  

arrived at station 2 at time 𝑡 − 𝛿̂2→3(𝑡). 
 
For a fork-in triplet (line 2 table 4), we monitor the target station 𝑡. The Estimated times in which water 

leaving stations 2 and 3 arrived at station 3 are 𝑡 − 𝛿̂1→3(𝑡) and 𝑡 − 𝛿̂2→3(𝑡), respectively. 
 
For a fork-out triplet, we wish to look at the same "drop of water " as it passes through the different 
stations. However, we cannot monitor both stations 2 and 3 at the wall time, since the flow times in the 
links 1 → 2 and 1 → 3 may differ. There are two possible solutions for this problem. The first possible 
solution is to monitor the same "drop of water" both station 2 and 3, but with one of them not taken to 
be the current wall time. We call this mode of operation "source is pivot" (line 4 table 4), since the source 
station sets the "monitoring time" for the triplet. In this mode, a water drop passing station 1 at an earlier 

time 𝑡 is monitored by also observing times 𝑡 + 𝛿̂1→2
′ (𝑡) , 𝑡 + 𝛿̂1→3

′ (𝑡) at stations 2 and 3, respectively. 
The monitor time 𝑡 is advanced by the system to be the most recent time such that data is available for 

both time  𝑡 + 𝛿̂1→2
′ (𝑡)  in station 2, and time 𝑡 + 𝛿̂1→3

′ (𝑡) in station 3. 
 
A drawback of the "source is pivot" mode is that stations 2 and 3 are not both monitored at the current 
wall time: one of the stations is monitored at a time which is earlier than the current wall time. The danger 
in "source is pivot" mode, is that if a water quality event affects an end station which is not monitored at 
the current wall time, the triplet model will only be able to detect the event at a later time. In order to 
address this issue, fork-out triplets can also be monitored by observing both stations 2  and 3 at the 
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current wall time (line 3 table 4). In this operation mode, the source station is monitored at two different 

times, 𝑡 − 𝛿̂1→2(𝑡) and  𝑡 − 𝛿̂1→3(𝑡), when computing the predictions for measurements at stations 2 and 
3, respectively. 
 
Our test statistic for detecting abnormal water quality events is discussed in the next section. 
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3.7 Triplets – Data statistic used for monitoring 
This section presents the test statistic used for monitoring events at the triplets level. In this section, the 

setup is such that a single triplet is monitored for events, and the triplet type and operation mode is one 

of the four modes/types listed on Table 4 in Section 3.6. The approach detailed below is general, and is 

relevant to all four operation modes. Hence, it avoids mentioning the measurement times and lag times 

(between triplet locations) directly. We will use the following notations: 

• 𝑦1 and 𝑦2 will denote the measured values for the target nodes in the two Pair models monitored 

by the triplet. 

• 𝑦̂1 and 𝑦̂2 will denote the predicted values for the target nodes in the two Pair models monitored 

by the triplet. 

• 𝑦̂1,𝐿 and 𝑦̂1,𝑈 will denote the lower and upper thresholds for prediction, respectively, for the target 

node in the first pair of the triplet. Thresholds can be computed using any coverage probability, 

but for this example let us assume a 95% coverage probability is used. 

• Similarly, let 𝑦̂1,𝐿 and 𝑦̂1,𝑈 will denote the lower and upper thresholds for prediction, respectively, 

for the target node in the second pair of the triplet. 

• Let 𝑒1 and 𝑒2 denote the following normalized error terms: 

𝑒1 =
𝑦1 −  𝑦̂1

max( 𝑦̂1,𝑈 − 𝑦̂1,𝐿 , 2𝑀) 
,    𝑒2 =

𝑦2 − 𝑦̂2

max (𝑦̂2,𝑈 − 𝑦̂2,𝐿 ,2𝑀)
, 

where 2𝑀 is the minimal size for a prediction interval, as defined in Subsection 3.5 (using the user 
limits). 

 
Our test statistic for monitoring events is: 

𝑇 =
1

4
⋅ √(𝑒1)2 + 𝛾(𝑒1)(𝑒2) + (𝑒2)2, 

where 𝛾 is a constant set by the user. 
 
Some additional notes and comments: 

• The parameter 𝛾 is added to the formula for 𝑇 in order to "gain" from cases in which 𝑒1 and 𝑒2 
are correlated, see for example Figure 70. 

• The normalization done in the formulas for 𝑒1 and 𝑒2 is aimed at making 𝑇 a unitless size, which 
is 𝑂(1) (see additional details on the distribution of T below). 

• A triplet model will declare a triplet alarm if the value of 𝑇 exceeds a set threshold for more than 
a defined time period. 

 
We have found through numerous simulations that for fork-out triplets, a value of 𝛾 in the range (2,4) 
provides good adjustment for the correlation between 𝑒1 and 𝑒2.  
 
The threshold for declaring abnormal events is set by the 95% percentile of T statistics across the most 
recent 30 day time period, excluding document water quality events. 
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In terms of typical values for the distribution of T, we have found that when taking a sample of T values 
with a buffer of 30 minutes or more between samples, the T statistic is typically gamma distributed. See 
Figure 71 for a sample of T values, and Figure 72 for a comparison of the same data sample to a Gamma 
distribution, with distribution parameters estimated using maximum likelihood estimators, using the R 
package 'fitdistplus'. Appendix B shows additional examples for times series of T statistics, and their fits 
to a Gamma distribution.  
 

 
 

 

Figure 71: Time series showing the distribution of T values for a forkout triplet, across 800 hours. Taken from triplet 441. 
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Figure 72: Comparison between the data shown in Figure 71, to the best fitted gamma distribution. Subplots show a histogram 
comparing the data to the maximum-likelihood fit, Q-Q plot, Empirical and theoretical CDFs and a P-P plot.  
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3.8 Spatial Model – a recap on the full methodology. 
Figure 73 shows a flow chart with the full SM methodology. See 4.8.1 for suggested parameter values.

 

Figure 73: A flowchart with the SM methodology. Parameters for each step are detailed in small, white on black text boxes. 

Data-preprocessing:  1) Observations with values exceeding filtration thresholds are removed. 

2) Fixed measurements over long time intervals are removed 3) Data is time- binned, use median value in bin 

computed. 

Select Flow-regimes: Select flow regimes using the methodology presented in Subsection 3.3. Partition Days of 

the week and times of the day by flow measurements, and also using knowledge of the water distribution 

network. 

Estimate Flow-times: Estimate flow times using the methodology presented in Subsection 3.2. Observe the score 

function graphs for each flow regime, and the estimated sampling errors for the flow time estimates (as reviewed 

in Subsection 3.4  

Train prediction models (automatic): For each pair, construct a training set using target node measurement and 

their flow-time adjusted source value, as described in Subsection 3.5. For each observation, compute its 

predicted value. Pairs with measurements unreliable for flow-time estimation, use flow-times estimated for the 

same network locations using different measurements 

 Estimate the distribution of prediction errors: Compute the prediction errors for the prediction in the previous 

step. Remove the most recent 5% of prediction errors (chronologically). Store the sort list of residuals.  

Calibrate and fine-tune models: Check the diagnostic plots: Actual vs. Predicted Graph, Target vs. flow-time 

adjusted Source values, distribution of errors. Change models if needed. 

Monitor target node measurements using pair prediction model (automatic):  For each measurement in an SM 

Pair targe node, compute it flow-time adjusted corresponding source value. Perform a prediction for the target 

node measurement based on the flow-time adjusted source value. Compute Spatial Model limits as described in 

Subsection 3.5. If the Actual measurements spatial model limits for an exceeded amount of time, raise an alarm 

and notify operator. In addition, track for "poor prediction" and "poor SM limits" alarms. 

Monitor station triplets using triplet models (automatic): Continuously compute Triplet model T statistics for 

each triplet, as discussed in 3.7. Estimate the distribution of T statistics using a Gamma distribution. If T values 

are observed for longer than a fixed delay time, notify operator.  

Construct objects for triplets: Construct line, fork-in and fork-out triplet models for the existing pair models.  

Parameters: range for valid values, binning resolution, maximum time for constant value 

Parameters: selected flow regimes 

Parameters: window size in minutes, flow time resolution, window-step size, 𝑁𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 , 

Minimum and Maximum Flow time considered, learning period 

Parameters: Nr segments and kernel size for kernel regression, Time period used for 

learning, should flowtime be copied from a different model 

Parameters: Remove 10% most recent errors (currently hardcoded) 

Parameters: 𝛼𝐿𝑜𝑤𝑒𝑟 , 𝛼𝑈𝑝𝑝𝑒𝑟, minimum size for prediction interval, Delay time, 

Parameters for soft limits 

Parameters: Triplet type, 𝛼𝐿 , 𝛼𝑈 , 𝛾 (correlation coefficient.), IsPivot (relevant only for 

ForkOut Triplets)  

Parameters: 1 − 𝛼 for setting threshold based on gamma distribution, delay time 
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3.9 Quiz for Unit B 
 

1) What types of object types are available in the Spatial Model? 
 

2) Explain the importance of flow regime selection and flow time estimation. What are the dangers 
of large errors in estimated flow times? 

 
3) Explain the general idea for the algorithm used to estimate flow times from the data 

 
4) How are flow regimes selected? mention several methodologies are auxiliary measurements 

that can help in the selection of flow regimes. 
 

5) What measurements are best used for the estimation of flow times? what can be done in SM 
pair model that are not based on these measurements? 

 
6) What is the sampling error for flow time estimators? how can it be estimated? 

 
7) Sort the following terms, into their methodological order, as performed when constructing 

prediction models: 
 

- Collect and sort the distribution of errors, remove errors from the last portion of the data, e.g. 
most recent 10% of the data. 

- Create a prediction value for each pair of measurements. 
- For each observed target measurement, find it's associated flow-time adjusted source value.  
- For each observed target measurement, find it's relevant flow time. 

 
 

8) Sort the following terms, into their methodological order, as performed when monitoring for 
events in a target station: 

 
- If alarm duration passes a prespecified delay time, notify operator. 
- Compare the observed measurement to the prediction interval. If the measurement is outside 

the prediction interval, start a "limits violation event". 
- Adjust prediction interval to be at least the required minimum size. 
- Use the historical distribution of errors to compute a prediction interval 
- Use the lag-time adjusted source value for performing a prediction. 
- Find the lag-time adjusted source value. 
- Find lag time for current target station date time. 

 
9) What is the danger of a model with poor prediction capabilities? 

 
10) Explain in what scenarios may triplet sensors be useful.  
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4. Unit C – The Spatial Model Software 
This Section describes the Spatial Model module of the EDS. Screenshots in this section were taken from 

a working Spatial Model system, and model names were changed to Station A, Station B, Station C and 

so on, so that real locations are not identifiable. 

System Objects and life cycle: 

Pair models are defined using existing EDS models for network stations, and Triplet models are defined 

using existing Pair models. A pair model can be in one of four possible states: Stopped, Running, Flow time 

estimation and Performing prediction. Models that are in run state are evaluated once every minute. If 

new records are available for the target node, predictions for target value are computed and compared 

to the actual values measured. If the actual value measured exceeds the computed thresholds, an alarm 

is raised. The SM module retrains the flow time for pair models once every 24 hours or when manually 

requested. Note that a pair model may use another pair model as a reference for flow time estimation, 

e.g. a Turbidity model may be unreliable for flow time estimation and may use the Conductivity based 

model between the same two stations for flow time estimates. Model that have been stopped are not 

evaluated. 

Types of Alarms 

The spatial model can raise one of the following alarms: 

• Limits violation – A measurement is the target node of a pair has exceeded it's computed limits 

• Poor limit – The ratio 
Range between Spatial limits

𝑅𝑎𝑛𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑙𝑖𝑚𝑖𝑡𝑠
 for a pair is larger than 50%. 

• Poor prediction – The ratio 
|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑡𝑎𝑟𝑔𝑒𝑡 𝑛𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒− 𝐴𝑐𝑡𝑢𝑎𝑙 𝑡𝑎𝑟𝑔𝑒𝑡 𝑛𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒|

 𝐴𝑐𝑡𝑢𝑎𝑙 𝑡𝑎𝑟𝑔𝑒𝑡 𝑛𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒
  for a pair is larger 

than 25%.  

• No data- A pair object has no data available in either the Target or Source station. 

The above four alarms are associated with a pair model. 

• Triplets alarms – A triplet's T value has exceeded it's computed threshold. 

Multiple alarm types can identify a single event, since several of the above conditions can be met 

simultaneously. However, the user will only be notified only of events including a "limits violation" 

type alarm. 
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Network States 

In addition to the different flow-regimes defined at the pair level, the Spatial Model module supports 

network-wide states. Currently, the following states are available for the monitored network: 

State E: Water supplied from an external source 

State R: Water supplied from reservoirs 

State E→R: Network is transitioning from state E to R. 

State R→E: Network is transitioning from state R to E. 

The state machine and transition rules for these four states is fully discussed in Section 4.2. Pair models 

may have a set time period where no alarms are raised after a Network State change, see Section 4.3. 

Modes may be set to monitor and raise alarms in state E, R or both. For transitions states, no alarms are 

raised. 

 

 

 

4.1 Intro to the SM software and main software panels 
This section describes the main screens and software panels of the SM software module. To gain access 

to the SM screen, begin by logging in to the MindSet Detector EDS system. Figure 74 shows the log in 

screen of the MindSet Detector. To log in: 

- Select all station related to the SM, see the label "1" in Figure 74 (you also just select all stations) 

- Select the option "Start spatial models server", see the label "2" in Figure 74. 

- Click the "OK" icon, see the label "3" in Figure 74. 

After log-in, you will see the main EDS screen, as in Figure 75. 
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Figure 74: The EDS log-in screen. Steps to log in marked in labels 

1 

2 

3 

Select EDS models related to 

 SM pairs and triplets 

Set the SM model 

 to start 

Click the 

'OK/Accept"' button 
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Figure 75 shows the loaded EDS models and their current state. For each model the following key fields 
are presented: 

- Model – gives the model name, used to identify the model in all screens 
- Description – a description of the model, in simple English 
- Status – current status. Model may be either running or stopped. Transition between states can 

be done using the 'lever up'/'lever down' button at the bottom of the screen. 
- Model Time – Last data timestamp processed by the EDS model. 
- Last Run – Last time model was evaluated, in server time. 

 
Details about additional fields, toolbars and EDS screens can be found in the EDS manual. 
 
Click on the "Spatial Model window" icon, depicting a map (and showed in red in Figure 75) to access the 
main Spatial Model window. 

 

 
Figure 75: The EDS models view 

  

Click to access the 

Spatial model 

window 
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Figure 76 shows the Spatial Model main window. The window features four views separated by tabs, filter 
selection boxes, a tool bar and a status panel. The four views are: 
 

- Pairs tab- shows the list of pair models and their current state. The pairs tab is shows in Figure 76 
- Triplets tab- shows the list of triplet models and their current state. Triplets and their respective 

tab are discussed in Section 4.9. 
- Panel tab – shows a " birds eye view" of all the models. The panel tab is shown in Figure 79. 
- Alarms tab- shows all alarms opened by the Spatial Model. The alarms tab is shown in Figures 81-

82. 
Next, we survey the pairs tab, toolbar, filter selection boxes, status bar, Panel tab and alarms tab, in this 
order. 
 

 
Figure 76: The Spatial Model Pairs view 

Pairs tab 
The pairs tab shows a table with rows corresponding to different pairs model, and the following fields: 

• Id- A unique numeric identifier for the link 

• Cluster – A string describing the cluster the link is in. Clusters are groups of links identified by a 
common name. Every link must be a member of a single cluster 

• Type- The type of SM model, "Pair" for all models in this view 

• Status – The current status of the model: stopped, running, estimating flow time or performing 
prediction. 

• Reg – The network flow regimes in which the model is active, see Section 4.3. 

• Station A – The name of the source station for this link. 

• Station B – The name of the target station for this link. 

• Last record – The timestamp for the last record processed in the target node. 

• Units – The units of measurement 

• Measurement – The name of the monitored measurement. 
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• Prediction Low/High Limit – The upper and lower thresholds computed for monitoring the target 
station. 

• Last Prediction – The last prediction given for the target node measurement for this link. 

• Last Actual value – The value measured at the target station at the timestamp indicated by "Last 
Record". 

• Alarm (if exists) – Describes the current alarms opened by this model.  

• Last CPU timestamp – Describes the last timestamp (in server time) this model was evaluated by 
the SM software. 

• Remarks – Additional remarks. 
 
Toolbar 
 
The toolbar at the bottom of the Spatial Model window contains the following options: 
 

 
 
The model editor is discussed in detail in Sections 4.3-4.5. The Graphs window is discussed in 4.6. Screens 
for Flow and network regimes are discussed in Section 4.2. The simulations screen is discussed in 4.10.  
 
Filter selection boxes 
Figure 77 shows the filter selection boxes available on the SM screens. 
Models in the pairs tab can be filtered by cluster (group of models). Measurement name, source station 
(A), and target station (B). Triplets can be filtered by any of the three Stations in the model, see additional 
details in Section 4.9. To filter the rows: 

1. Select filters using the drop down menus. 
2. Selecting which filters are activated using the checkboxes 
3. Click the "Refresh view" button to immediately filter the results. 

 
Figure 77: Filters for the Spatial Model window 

  

Set selected model state to "run" 

Set selected model state to 

"stop" 

 

Open selected model in model editor 

Refresh view 

View graphs for selected model 

Generate reports 

Export models to files  

Define a new model (in model editor) 

Set flow regimes and network regimes 

Server setup 

Run "what-if" simulations 
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Figure 78 shows additional options for filtration and viewing. The first option in Figure HHH sets whether 
the view will automatically refresh once every 5 minutes. If turned off, the view will refresh only when the 
user clicks the "Refresh view" button. The second option in Figure 78 sets whether all models are 
displayed, or only models in "Run" status (including flow time estimation and prediction). 

 
Figure 78: Additional Filters for the Spatial model window 

Status bar 
The status bar found at the bottom of the screen features the following fields, from left to right: 

- Total number of objects loaded. 
- The number of objects performing flow time estimation, i.e., learning 
- The total number of pairs performing prediction/ activated (HHH). 
- The total number of pairs objects 
- The total number of triplet objects 
- A status line showing key messages, such as HHH 
- The current server date and time 

 
 
Panel tab 
The panel tab shows an alternate view of all pair models, along with their state and common key 
indicators. Figure 79 shows the Panel tab, while Figure 80 shows a "zoomed-in" view of one of the pairs 
in the panel tab. Next, we describe the different fields available for each Pair model in this tab. 

 

 
Figure 79: The Spatial Model panel view.  

 

Click to access the Panel tab 
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The different fields for each Pair model in the Panel tab, as in Figure HHH, are: 
- The name of the Pair model 

 
- The current model time (last processed record) 

 
- Current model status (Run/ Stop/ Flow time learning/ Prediction) 

 
- The current value in the target station 

 
- The predicted value for the target station, based on the source station. 

 
- Alarm indicators, from left to right: (marked by a red rectangle in Figure HHH) 

o Limits violation – marked by a red rectangle with an exclamation sign (turned off in 
Figure HHH). 

o Poor limits – marked by an orange rectangle with an exclamation sign (turned on in 
Figure HHH) 

o Poor prediction – marked by a yellow rectangle with an exclamation sign (turned on in 
Figure HHH) 

o No data- marked by a blue rectangle with an exclamation sign (turned off in Figure 
HHH). 
 

- The user limits, as defined for the monitored measurement in the EDS model for the target 
node. 
 

- The statistical limits for the target node measurement, as computed by the statistical limits 
detector in the EDS model for the target node. The percentage found to the right of limits gives 
the ratio between the range of the statistical limits and the user limits. Numbers under 100% 
represent an improvement in the statistical limits compared to the user limits. 
 

- The spatial limits for the target node measurement, as computed by the Spatial Model 
software. The percentage found to the right of the spatial limits gives the ratio between the 
spatial model limits and the statistical limits. Numbers under 100% represent an improvement in 
the spatial limits compared to the statistical limits. 

-  
Figure 80: A Spatial Model panel item corresponding to a single Pair model. Alarm indicator are marked by a red rectangle. 



102 
 

The different fields, such as percentages and alarms, feature a tool tip text label stating their 
computation. 
 
Alarms tab 
The alarms tab, shown in Figure 81, shows the different the current open and historic alarms raised by 
the Spatial Model software. Users can view current or historic alarms, and filter alarms by type and 
location: 

1. Switch between alarm types using the option boxes names "Current Alarms" and "Historic 
Alarms". 

2. For historic Alarms, you may filter by a "From data" and a "To Date". Filter are activated using 
the checkboxes. Date selection is using the date and time field for each filter. 

3. Filter alarm by type, using the check box fields on the top right. Alarms filters correspond to the 
5 alarm types presented at the start of Unit C. 

4. Since alarms may be raised from different objects, The user may filter alarms by clusters, 
measurements and stations, using the filter selection boxes at the bottom of the screen. 

5. After performing 1-4 (some steps optional), click on the refresh button found on the left of the 

screen ( ). 
Alarms will be presented in the table at the center of the screen. Alarms will feature: 

• The object Number and Description (for the object generating the alarm) 

• The description for the alarm 

• Alarm start, trigger and end times. The trigger time is the start time + the delay time for alarm 
see Sections 4.3-4.4 for discussion of delay times. 

• The alarm age, in Minutes. 

• The time of last update to the alarm record and additional notes. 
 
 

 
Figure 81: The alarms view 
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Figure 82:Viewing Historic Alarms in the Alarms and Reports tab. 
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4.2 Analyzing and choosing flow regimes. 
This section describes how flow regimes and network regimes are defined using the Spatial Model 

software user interface. To recap, flow regimes are recurring time periods, i.e. times of the day and day 

of the week, that exhibit similar flow times between neighboring stations. Therefore, flow time 

estimates are provided based on the different flow regimes. Network regimes are network states 

describing if water is supplied from network-wide water reservoirs, external water sources, or the 

network is transitioning between states. Network regimes are used to activate/ deactivate pair models, 

since some pair models may be relevant only for some of the network regimes. See additional details in 

Section 4.3. 

4.2.1 Flow regime 
The Spatial Model regimes manager can be accessed by pressing the 'clock' icon available under the 

toolbar in the main Spatial Model window. The Icon can be seen at Figure 83. 

 

Figure 83: The icon for the Spatial Model regimes manager. Found in the main Spatial Model window toolbar 

The Spatial Model regimes manager is shown in Figure 84. We describe the different on-screen elements 

on the next page.  

 

Figure 84: The Spatial Model regimes manager 
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The top table on Figure 84 shows the available from regimes (indexed starting from 0), along with their 

names and recurring time periods. Recurring time periods for flow regimes are defined by the months of 

the year, days of the week and hours of the day. The Letters 'Y' and 'N' denote which days and months 

are active for the regime (Y) and inactive (N). It is up to the user to verify that inserted regimes cover all 

times and dates, and that each time-date combination is covered by a single flow regime. To edit a flow 

regime, double click on its row. This will bring up the Flow Regime editor shown in Figure 85. After done 

editing all flow regimes, click the save (diskette) icon.  

Special dates -  forcing calendrical dates of one type to become another type, e.g. to mark flow regimes 

for holidays, are defined using the 'special dates' list box at the bottom of the screen. 

Figure 85 shows the Flow regime editor. This editor shows: the regime name; if it is activated (deactivated 

regimes are not considered for flow time estimation); and the months, week days and hours the regime 

is active. Activated months and days are shown in two separate tables. Click on the table rows to change 

table values (Y/N). The starting and ending hours for the regime are defined by the selection boxes at the 

bottom of the screen. Click the OK or cancel buttons at the bottom of the screen to approve or cancel 

your choice.  

 

Figure 85: Flow regime editor. 
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4.2.2 Network regimes 
The second tab in the Spatial Model regimes manager shows the different Network regimes (seen in 

Figure 86). The network regimes, also listed at the start of Unit C, are:  

State E: Water supplied from external source 

State R: Water supplied from reservoirs 

State E→R: Network is transitioning from state E to R. 

State R→E: Network is transitioning from state R to E. 

Transitioning between network states: The algorithm by which the SM decides on the current network 

regime is as follows. The Spatial Model tracks flow variables defined by the user. For each flow variable,  

the SM evaluates a state machine, for its current state. The per-flow-variable states are seen in the last 

column of Figure 86, with the list of possible per-variable states being identical to the list of possible 

network states (regimes). When all monitored flow variables reach the same state, the network regime 

is changed to this state/regime. In other words, it is a voting mechanism requiring a unanimous vote.  

We move to describe the per-flow-variable state machine. 

 

Figure 86: Network regimes definitions tab 
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4.2.3 The per-flow-variable state machine 
For each variable, the user defines: 

- A switch-point (abbreviated to threshold SP)  

- A positive and negative derivative thresholds (abbreviated to threshold PD, and threshold ND).  

- The number of records used to compute the derivatives, or average the flow time raw values, 

abbreviated to N. 

- The delay time, in minutes, giving the minimal time the state machine must spend in each state 

(to avoid jitter). 

For each flow variable defined, the SM checks: 

- Is the current flow value is above or below the current set point? 

- Is the current derivate, given by the change in the flow value across the last N records (N being 

the number of records defined by the 'Records' field) above or below the PD and ND thresholds? 

The transition rules for the state machine are described below. IF/THEN statements are marked with 

bold/underline, conditions on flow values are marked in red, and conditions on flow value derivatives 

are marked in blue. 

Rule 1: If the network is in state 'R' and 

              all monitored flow values, averaged across N records are above their threshold SP and 

              all monitored flow value derivatives are smaller than their respective threshold ND values then: 

              transition to state 'R->E'. 

Rule 2: If (the network is in state 'R' or state 'R->E') and 

              all monitored flow values, averaged across N records are below their threshold SP then: 

              transition to state 'E'. 

Rule 3: If the network is in state 'E' and 

              all monitored flow values, averaged across N records are smaller their threshold SP and 

              all monitored flow value derivatives are higher than their respective threshold PD values then: 

              transition to state 'E->R'. 

Rule 4: If (the network is in state 'E' or state 'E->R') and 

              all monitored flow values, averaged across N records are above their threshold SP then: 

              transition to state 'R'. 

A diagram for the state machine, along with the possible transitions between states is given in Figure 87. 
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Figure 87: Network regimes state machine and transition rules 
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4.3 Pair Model – Definition 
This section describes the spatial model editor, allowing the user to edit existing or new models. Sections 

4.3-4.5 of this manual describe how to use the editor to edit pair models. Section 4.9, discussing triplet 

models describes how to create and edit triplet models. The model editor can be accessed by: 

- clicking or a (pair) model in the spatial model main window, described in Section 4.1, and then 

clicking the model editor button ( ) 

- clicking the 'create a new model' button ( ) on the spatial model main window. 

The spatial model window is shown in Figure 88. When creating a new model, the fields shown in the 

figure will be blank. When editing an existing model, the fields will be filled with model's details. The 

different field types (and field groups) in Figure 88 are numbered 1-8, in red. In the next page, we describe 

the buttons on the left side of the editor, along with all fields found under the basic setup tab. Additional 

tabs, explaining how to review estimated flow times, predictions performed and edit advanced model 

parameters are described in the next sections. 

 
Figure 88: The Spatial Model editor. Numbers corresponds to steps when building models, described in Section 4.3. 
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The buttons found on the left of the Spatial Model Editor and their corresponding actions are: 
 

    
The 'New Model' button will clear all fields, and allow a new model to be defined. The 'Delete Model' 
button will delete the current model. The 'Save Model' button will save the current model to the EDS/SM 
database, after changes have been made to model definitions. The 'lever-up' and 'lever-down' buttons 
will move the model between 'Run' and 'Stop' states, respectively. The 'Refresh' button will reload all 
existing fields, as they are defined in the EDS/SM database. The 'Request model flow time estimation' 
button will inform the SM that this model requires estimation of flow times, even if the last estimation of 
flow times for this models was made less than 24 hours ago. 
 

Next, we describe the different fields required for the basic setup of a pair model. The steps, numbered 

1-8 below, correspond to the numbering found in Figure 88.  

Step 1 – select model type 

Select the model type to be 'Pair' in the 'Link Type' selection box on Figure 89. 

The illustration on the right of the selection box should display a pair model, with a source and target 

station. 

 

Figure 89: Model type selection box 

 

  

Save model 

Delete model 

Set model to 'stop' state 

Request model flow time estimation 

New Model 

Set model to 'Run state' 

Refresh fields 
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Step 2 – select model name 

Click the button with the label '…' to edit the model's name. The 'edit link name' window, shown in 
Figure 90 will appear. The window shows the current model name, a suggested model name and an 
editable field with the new name selected. 

 
Figure 90: Model name selection box 

 
 

 
 

 
 
Step 3 – select model stations 

Select the model stations, denoted by A and B for the source station and target station, respectively. For 

station, select the station name, along with the sensor name (4 selection boxes total). The measurement 

for the selected sensor will be displayed to the right of the sensor name for each sensor. 

Station C is used in Triplet models alone.  

Step 4 – select clusters, regime and sensors profile. 

Step 4a: select cluster – each pair is part of a cluster. Clusters are groups of models, usually defined by 

geographical region. Clusters are used to filter models in the SM main window, so that only models of a 

selected cluster are viewed, see details in section 4.1. The user may type a new cluster name under the 

'cluster' field, or select one of the existing cluster names 

 
Step 4b: select network regimes -  

Use the 'Regime' drop down menu (Figure 91) to select on which network regimes the model will be 
activated – all hours/ water supplied from storage/ water supplied from an external source. 

 

 
Figure 91: Selection box for the network regimes in which the model will be enabled. 

Click this button to exit the window without selecting a new name 

Click this button to copy the name suggested by the SM to the new name field 

Click this button to save the currently selected name, fund under the 'new name' field 
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Step 4c: select sensors profile -  

Each pair has a sensors profile selected, as shown on Figure 92. The available profiles are: 

• Similar sensors – sensors are for the same measurement and from the same manufacturer. 

• Similar sensors, different producers – sensors are for the same measurement but from different 
manufacturers. 

• Different sensors producers – Sensors are for different measurements 
 

 
Figure 92: Select pair sensors profile 

The sensor profiles are used to categorize pair models when producing reports in the SM software. 
 
Step 5 – select valid limits 
Select the upper and lower limits for both the source station and target station, in terms of measurements. 
Measurements above or below these values will be regarded as technical faults and will be removed from 
statistical analysis.  
 
Step 6- Select delay times 

The basic model definition has two delay times defined: 
 
Delay after regime change- following this time (in minutes) after a network regime change, the model will 
not generate alarms. Note that this condition is additional to the active regime selection in step 4b (pair 
active in network states E/R/E&R). 
 
Alarm trigger delay- this delay time is the amount of time the target measurement must exceed the spatial 
model limits (shown in Sections 4.1 and 4.6 for each model) for an alarm to be trigged. Before this time, 
the alarm will be considered as pending. 
 
Step 7- select the lag time source, and number of data days used for prediction 
 
Learning days for prediction – this field sets the number of days, prior to the current EDS monitoring date, 
that will be used to construct the prediction model. Recommended values are 14-30 days, with 30 days 
required for general sensors, and 14 days required for high-quality physical measurement sensors. 
 
Lag time source – sets from where flow time estimates are taken:  

• Learn from pair history – this pair model estimates its own flow time. 

• Use other pair – this pair model will copy its flow time estimates from another pair model, 
between the same source and target stations. When selecting this option, the user must also 
select from which pair model should the flow time estimates be copied. 

 
The field 'Last learning of flow time' will show the last time, by server time, that flow time estimates were 
computed for this pair model. 
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Step 8 - select the learning period for lag time 
The user must select the learning period for the lag time, is the pair model will estimate its own flow 
time (first option in Lag time source, step 7). The options are: 

• Fixed – the user may select fixed dates from which data will be taken for flow time estimation  

• Relative to current date – the user may select the number of days, prior to the current date, 
used for estimating flow times. 

• All historical data – all available data will be used to obtain flow time estimates. 
 
Following steps 1-8, the user must save the selected configuration. The Spatial Model editor will request 
the user to save the configuration, as in Figure 93. 
 

 
Figure 93: message requesting the user to save the current model configuration. 

Following the configuration, set the model to run using the 'lever-up button'. On screen fields will be 
grayed out, as in Figure 94, except for the 'Stop', 'Refresh' and 'Learn' buttons. Stopping the model will 
make all fields editable again.  
 

 
Figure 94: The model editor for a running model 
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4.4 Pair Model – Advanced Parameters 
This section describes the advanced parameters tab, containing additional model configuration 

parameters. The tab is shown in Figure 95. 

 

Figure 95: The advanced parameters tab 

The following parameters are found in the tab: 

Bin size – measurements are binned across time, with the median value in each bin taken as the 

representative value, as discussed in Section 2.1. This value sets the size of the temporal bin, in minutes. 

Window step – When computing the sum of the correlation statistic, across all window pairs, this will 

give the step size, in minutes, when incrementing the pointer across the two times series. Since each of 

the two time series is highly correlated across time, the correlation statistics for pairs of windows 

changes very little, when incrementing window positions by a small value in time. Hence, it makes sense 

to increment windows by a more than a single measurement, e.g. , increment window positions by 30 

minutes, each increment, when iterating over all pairs of windows. See Section 3.4 for a detailed 

description. 
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Window size – The size of the temporal window , in terms of minutes, for computation of the correlation 

between the source and target measurement series. See Section 3.4 for a detailed description. 

Lag time resolution – when estimating the score function across lags, this will give the resolution of the 

candidate lag times, in terms of minutes, e.g., estimate the possible lags at 15 minute steps: a flow time 

of 0 minutes, 15 minutes, 30 minutes, 45 minutes and so on. 

Partition for flow time estimation – The number of partitioning units, when using a leave-one-out 

estimation method to assess the sampling error of flow time estimate. The full algorithm is described in 

Section 3.4, Unit B. 

NN Nr segments – The total number of segments used for the kernel estimator regression model, as 

explained in Sections 2.5 and 3.5. Note that this is the number of segments used for the entire dataset (X-

axis), not just for computing the local prediction estimate. 

NN Kernal Size - The relative portion of all segments used for computing the kernel model's predictions, 

as explained in Sections 2.5 and 3.5. 

Minimum and Maximum lag time – The minimum and maximum times for flow time estimate candidates, 

in minutes. 

Maximum time measurements is allowed to be constant – If a measurement is constant for more than 

this time, additional constant measurements will be considered invalid. 

Alpha lower limit and Alpha upper limit – The upper and lower non-coverage probabilities for the 

prediction interval constructed by the prediction model. For example, by setting these values to be both 

0.01, the upper and lower limits computed by the pair's prediction model will provide a 98% prediction 

interval. The 98% prediction interval will has a 98% probability of having the actual measurement inside 

it, for each measurement. 
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4.5 Pair model – Flow time estimation and diagnostics for flow time estimation 
In Unit B, Section 3.2, we reviewed the algorithms and methods used for flow time estimation in Pair 

models. The 'Learn Chart' tab is used to view the score function, by flow regime, after flow times have 

been estimated for each flow regime. Figure 96 shows the 'Learn Chart' for an example model. The score 

function is plotted for each candidate lag value. The selected lag\ selected delay time is marked by a red 

line on the graph, and is written under the label "Selected Delay time". The number of window pairs 

used for flow time estimation is also presented on screen. The Flow regime to be presented may be can 

be selected using the drop-down menu on the left. 

 

Figure 96: The 'Learn Chart' tab of the model editor, showing the score (objective) function for each flow regime. 

The 'Log Data' tab shown in Figure 97 lists the messages and error descriptions generated by the pair 

model. Figure HHH shows a possible output, where the model estimated flow times and preformed 

predictions correctly. The log messages detail the Last time CPU times were given to the model, the last 
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target station timestamp processed, the dates used for flow time estimation, and other descriptive 

fields. 

 

Figure 97: The 'Log Data' tab shows the error and message log for the pair model. 
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4.6 Pair model – Predictions, charts and diagnostics for prediction models 
 

The 'Prediction Results' tab in the Spatial Model editor describes for each pair model: 

• Model prediction for the target node by timestamp 

• Actual values for the target node, by timestamp 

• Spatial Model limits (both lower and upper limit) used for detecting abnormal events in the 

target node. 

Figure 98 below shows the Prediction Results tab for a conductivity-based pair model.  

 

Figure 98: The 'Prediction Results' tab shows the predictions performed for the target node, along with the upper and lower 
limits and the actual values measured in the target node. 

Next, we review the different charts available for each pair model. The charts are accessible through the 

Spatial Model main window, by selecting a pair model in the SM pairs tab, and clicking on the 'graphs' 

button in the main menu toolbar ( ). 

After opening the charts screen for a pair model, the Spatial Limits chart for the model will appear, as in 

Figure 99. The Spatial Limits charts presented the actual, predicted and spatial limit values for the pair 
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model's target node, in a time series chart format. A legend explaining the color coding is featured 

above the graph. The user may select different dates to display values for, and click the refresh button  

( ) to view an updated graph. 

 

 

Figure 99: The SPA pairs chart window show the actual, predicted and limit values for the target node in a pair model, as a time 
series. 

The user may select additional graphs, using the drop down menu, on the top right of the screen. The 

different charts options available are shown in Figure 100. 

 

Figure 100: Type of charts available in the 'SPA Pairs Charts' window. 

We proceed to reviewing the different types of charts available. 
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The 'Spatial Limits Violations' chart is a bar plot stating the number of measurements that featured a 

violation of the spatial model limits, and the number of consecutive violations of the spatial model limits 

up to that measurement.  For example, the graph depicted in Figure 101 shows: 

• 6 measurements that featured a violation of the spatial model limits, with no previous violation 

of the limits in the time prior to the measurement 

• 4 measurements that featured a second violation (in-a-row) of the Spatial Model limits.  

• 2 measurements that featured a third violation (in-a-row) of the Spatial Model limits.  

• 2 measurements that featured a fourth violation (in-a-row) of the Spatial Model limits.  

• … 

• 2 measurements that featured a ninth violation (in-a-row) of the Spatial Model limits.  

• 1 measurement that featured a tenth violation (in-a-row) of the Spatial Model limits. 

This graph can be interpreted as a: 

• Two events of Spatial Model limits violations lasting for a single measurements, together with, 

• Two events of Spatial Model limits violations lasting for two consecutive measurements, 

together with, 

• A single Spatial Model limits violation event lasting for 9 consecutive measurements, and 

• A single Spatial Model limits violation event lasting for 10 consecutive measurements 

(6 events total). 

 

Figure 101: Bar chart showing the number of timestamps with X consecutive violations of Spatial limits, X being a number of 
samples. For example, in the above graph, 2 events violated the spatial limits for  9 consecutive measurements, and 1 of the 2 
events violated the spatial limits for an additional, 10th consecutive measurement.  
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The 'Spatial Limits violations' chart allows the user to run a 'what-if' analysis, testing how would the 

number of events change if: 

• Spatial model limits were increased or decreased by a constant percent 

• The delay time for raising an alarm was different, in terms of the number of observations. 

In order to run a 'what-if' analysis, click the 'force-limits' option as shown in Figure 79 and click the 

refresh button ( ). 

 

Figure 102: The user may run a "what-if" analysis, increasing or decreasing the SPA limits by a fixed percentage, or changing the 
delay time. The "what-if" scenario can be run using the "force limits" option on the right. 
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The 'Actual vs. Predicted' chart (shown in Figure 103) allows the user to view the actual values measured 

in the target station along with their predicted values. Each point represents a single data point (time-

stamp). The user may scale the axis, as shown in Figure 104. 

 

Figure 103: Actual Vs. Predicted graph for the target node in a pair 

 

Figure 104: The user may set the X and Y scales for the Actual vs. Predicted graph using the "Force X and Y scale" option on the 
right (marked in red). 
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The 'Prediction Error Histogram' chart, shown in Figure 105, shows the distribution of prediction errors, 

for the pair model using two scales: engineering units (in brackets), and relative part of the range 

defined by the user limits (next to the percentage sign). 

 

Figure 105: A histogram for the distribution of prediction errors.  
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The 'Source and Target Original Learning Set (adjusted for flow-time)' chart presented the data points 

used to build the prediction model, as explain in Sections 2.5 and 3.5. The pairs of points represent target 

node measurements, along with their flow time adjusted source station values. A pair of points in the 

chart, (X,Y), represent values measured at the source and target stations.  The two measurements are not 

taken at the same time, but at a time gap according to the estimated flow time between stations. Note 

that not all points in the graph use the same flow time (lag time)- the time difference used for associating 

X and Y measurements is taken based on the time stamp and flow regime associated with the target node/ 

Y value. 

 

Figure 106: A scatterplot showing the actual target station values vs. the lag-time adjusted values from the source station. 
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4.7 Pair model – Connecting to EDS, defining detectors and delay time 
This section discusses how to connect the SM to the alarm logging and notification management in the 

EDS system. Users are encouraged to review the types of alarms, their meaning and trigger conditions, 

and their indicators, at the start of Unit C and at Section 4.1. Note that only SM limit violation alarms 

trigger an EDS alarm. All other alarm types (poor limit/ poor violation/ no data/ Triplet alarm) will be 

added as secondary alarms (descriptive), to the limits violation alarm. 

To connect a alarms from SM model to an EDS model perform the following steps. 

Step I: Open the EDS model manager form for the model to which you want to connect SM alarms. The 

model manager window can be opened  through the EDS main window. Figure 107 shows such a form 

after opening. 

Step II: Select the "Detectors" window, by clicking the the "Detectors" button marked by a red rectangle 

in Figure 107. 

 

Figure 107: The EDS model manager window for a specific EDS model. The button used for accessing the Detectors screen is 
marked in red. 
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Step III: Figure 108 shows the Detectors window for a given station. The "add new detector" button is 

marked in red. Click on this button to add a new detector, connecting SM models to the EDS. 

 

Figure 108: The Detectors window. The button for adding a new detector in marked in red. 
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Step IV: Figure 109 shows the Detector Policy Editor Window. Select the Detector type to be 
"SPATIAL_LINK_DIF" and then select as the detector key the water quality measurement monitored by 
the SM model you wish to connect. The EDS will track all pair model with this station as their target 
node, and with this measurement, and will trigger EDS events based on their alarms.  
Also make sure the click the "Active" check box indicating the detector is active. See the red rectangle 
at the top of Figure 109, and the red arrow marking the check box. 

 
Figure 109:Detector Policy Editor Window 

Step V: As a notification policy (marked by the lower rectangular red box) in Figure 109, select "Every 
trigger", so the EDS will provide a notification for every alarm raised by the SM. 
 

 
 
Step VI: click the approve button to finalize. 

 

 - Approve selection 

 - Quit (disregard changes) 

- Calculate detector performance 

- Calibrate Delay times for alarms 
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4.8 Suggested Parameters, Case studies and examples 
This section discusses the "off-the-shelf" suggested parameter configuration for SM models, as well as a 

variety of examples that are used to better explain the behavior of the spatial model under various 

settings. Graphs demonstrating the behavior of different models is used to serve as a yardstick for 

assessing the performance of user models 

4.8.1 Suggested Parameters 
For pair models, we suggest the following parameter configuration: 

Flow time estimation: 

- Preferably estimate flow times using all available data (unless network operation is substantially 

different when looking more than 2 years back).  

- At least 2 months of data for typically behaved sensor. More data may be needed for noisy 

sensors. 

- Split to no more than 15 flow regimes.  

- Make sure regimes are 6-7 hours in length, for each regime. 

- Set the maximum flow time to be considered to 1200 minutes (and less than 1 day at all times). 

- Set the flow time resolution to 10-15 minutes. 

- Set the window size for estimation of flow time to be 60-90 minutes (with 60 minutes for a sensor 

with little noise, and a very distinct time-varying signal in the data). For battery powered sensors 

– 120-150 minutes. 

- Set window step size to be 1/3 of window size. 

- Filter out measurements constant for more than 1 hour. 

Prediction: 

- Train using 30 days of data. 

- Use a 95% prediction interval, i.e. 𝛼𝐿 = 𝛼𝑈 = 0.025 

- Set the delay time to be 1 hour 

- Hard-coded as of November 2020: prediction interval will be set to be no less than 10% of 

measurement user limits. 

- Hard-coded as of November 2020: alarms will not be raised if distance between actual and 

predicted is not more than 20% of measurement statistical limits. 

- Hard coded as of November 2020: the 5% most recent errors (residuals) will not be used when 

estimating the distribution of errors. 

- Set the delay time to 30 minutes. 

Triplets: 

- 𝛾 = 4 

- For fork-out triplets, set IsPivot to FALSE. 

- 𝛼𝐿 = 𝛼𝑈 = 0.025 

- A delay time of one hour. 

- Set 𝑀 to be the same as in pair models (see description in Section 3.7). 
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4.8.2 Case of events detected both by EDS and Spatial Model 
We examine a case of a drop in Free Chlrone event identified by both the EDS and the Spatial Model. 

Figure 110 shows the drop in Free Chlorine, falling below a value of 0.2 mg/L, as marked by a red cicle. 

Figure 111 shows this events, built of several small "drops" in F-CL value was identified by the EDS. 

Figure 112 shows this event was also identified by the Spatial Model.  

 

Figure 110: An example for a drop in Chlorine Event 

 

 

Figure 111: EDS alarms for the drop in F-CL event showed in Figure 110. 



130 
 

 

Figure 112: SM alarms for the drop in Chlorine event showed in Figure 110. The relevant rows are the ones with a measurement 
of Chlorine and a "TestNet2" cluster identity. 
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4.8.3 Case of an early warning 
We show an example of the SM resulted in an early detection of an irregular event with increased 

conductivity. Figure 113 shows a case of an increased conductivity value reaching 950 𝜇𝑆/𝑐𝑚 at 3:00 AM 

10th September 2020. This event triggered an EDS alarm. Figure 114 shows an Event was triggered by the 

SM, up to 36 hours before, due to a prior increase in conductivity. A look at the increases in conductivity 

in Figure HHH shows the increase experienced in Figure 114 is in fact a pending problem, that could have 

been identified before. 

 

Figure 113: An increase in Conductivity identified by the EDS. 

 

Figure 114: Detection of irregular Conductivity measurements by the SM, prior to the event in Figure HHH. 
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4.8.4 Additional Examples for real events in data 
We show examples for additional events detected in data by the SM. Figure 115 shows an example of a 
spike in Turbidity detected by the SM. Figure 116 shows an example of a slow increase in conductivity 
detected by the SM. 
 

 
Figure 115: An event with a spike in conductivity detected by the SM. 

 

 
Figure 116: An event with a slow increase in conductivity detected by the SM. 
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4.8.5 Comparison of conductivity models 
We show a comparison of two SM pair prediction models for conductivity measurements. The 

comparison is given in Figure 117. Subfigures A and B in Figure 117 show the actual vs. predicted plot 

and histogram for prediction errors, respectively, for the conductivity prediction model showing a good 

fit to the data. Subfigures C and D show the same plots of the same type for a conductivity model with a 

substantially worse fit to the data. 

In subfigure C we see points in the actual vs. predicted line don't match a 45 degree angle. The errors in 

subfigure D are substantially more dispersed than in Figure B. 

 

 

Figure 117: Comparison of the models for predicting conductivity in two SM pair models. Subfigures A and B show the actual vs. 
predicted plot and histrogram of prediction errors for a model showing good fit to the data. Subfigures C and D show the same 
charts for a model with worse fit to the data. 
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4.8.6 Comparison of Redox models 
We show a comparison of two SM pair prediction models for redox measurements. The comparison is 

given in Figure 118. Subfigures A and B in Figure 118 show the actual vs. predicted plot and histogram 

for prediction errors, respectively, for the redox prediction model showing a good fit to the data. 

Subfigures C and D show the same plots of the same type for a redox model with a substantially worse 

fit to the data. 

We observe points in the actual vs. predicted plot in Subfigure C to be substantially more dispersed than 

the points in Subfigure A. 

 

Figure 118: Comparison of the models for predicting redox in two SM pair models. Subfigures A and B show the actual vs. 
predicted plot and histrogram of prediction errors for a model showing good fit to the data. Subfigures C and D show the same 
charts for a model with worse fit to the data. 
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4.8.7 Comparison of Turbidity models 
We show a comparison of two SM pair prediction models for turbidity measurements. The comparison 

is given in Figure 119. Subfigures A and B in Figure 119 show the actual vs. predicted plot and histogram 

for prediction errors, respectively, for the turbidity prediction model showing a good fit to the data. 

Subfigures C and D show the same plots of the same type for a turbidity model with a substantially 

worse fit to the data. 

In subfigure C we see points in the actual vs. predicted line don't match a 45 degree angle. The errors in 

subfigure D are substantially more dispersed than in Figure B, and the distribution of prediction errors is 

not symmetric around zero. 

 

 

Figure 119: Comparison of the models for predicting Turbidity in two SM pair models. Subfigures A and B show the actual vs. 
predicted plot and histrogram of prediction errors for a model showing good fit to the data. Subfigures C and D show the same 
charts for a model with worse fit to the data. 
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4.8.8 Examples for poor efficiency of spatial model limits 
We show two examples where spatial model limits are inefficient, and are larger than 50% of the range 

between user limits. The examples are shown in Figures  120 and 121. 

 

Figure 120: An example with inefficient Spatial Model limits when monitoring conductivity measurements.  

 

 

Figure 121: An example with inefficient Spatial Model limits when monitoring Free-CL measurements. 

  



137 
 

4.8.9 Limit time for an event 
This example shows the importance of filtering the most recent 5% of prediction errors from the 

distribution used for computing the Spatial Model limits in Section 3.5.2. Figure 122 shows an example of 

an abnormal increase in pH, marked by the red arrow. The abnormal pH measurements continue for 

more than a day, with values returning to normal only at the timepoint indicated by the purple arrow. 

However, the abnormal prediction errors become a substantial portion of the training set already at the 

time point marked by the green arrow. Hence, the difference between the abnormal value of pH, and the 

current source value stops being irregular, and SM limits show the current value of target station pH is 

not abnormal. In order to avoid a case where prediction errors from a water quality event affect the 

detection thresholds, the most recent 5% of prediction errors are removed from the data.  

 

Figure 122: Example of why the most recent prediction errors should be not be used for setting the SM event limits. An 
abnormally high value of pH is observed starting from the time point indicated by the red arrow until the timepoint indicated by 
the purple arrow. Target station measurements are not declared as abnormal starting from the time point marked by the green 
arrow, since large prediction errors have entered the empirical distribution used for setting SM event limits.  
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4.9 Triplet model – definition 
The triplets tab in the Spatial Model main window (Figure 123) lists all defined triplet models. The values 

listed for each mode are: 

• The triplet ID (unique value) 

• The Cluster identity for each triplet 

• Triplet type – One of three values: triplet (line)/ Fork out/ Fork in 

• Triplet status (Run/ Stop). 

• Reg -  The network regimes in which the model is active (user's choice, as in Section 4.3) 

• The three stations featured in the triplet – Denoted by Station A/B/C. 

• The model time for each triplet model – the most recent timestamp, by sensor clocks, that can be 

monitored by the triplet model. See Section 3.6 for description of the time adjustments between 

sensor times, used in order to determine this field. 

• Indication if a triplet alarm exists 

• The Last predicted timestamp. – the last time (by server clock) a triplet was monitored  

• The triplet description – a descriptive string usually listing the three stations in the triplets, along 

with the monitored measurement name.  

Cluster and station filtration options (using the toolbar) described in Section 4.1 are also applied to this 

screen. 

 

Figure 123: The triplets tab 
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New triplet models may be defined using the Spatial Model Editor. Figure 124 shows the 'Triplets Setup' 

tab in the model editor. To define a triplet model : 

1.  select the type of triplet, as shown in Figure 124. Triplet types may be either: fork-in/ fork-out 

or triplet (line). 

2. Select the model name ("Spa Link Description"). 

3. Select the two pairs for the triplet model.  

For a line/triplet model – Pair 1 should be the upstream pair, and pair 2 should be the 

downstream pair. The two pairs should have a shared node – the target node for pair 1 

should be the source node for pair 2. 

 

For a fork out model, the two pairs should share the source node 

 

For a fork in model, the two pairs should share the target node. 

4. Select the additional parameters, 𝛼𝐿 , 𝛼𝑈 , 𝛾, 𝑖𝑠𝑃𝑖𝑣𝑜𝑡 and the critical value (given by percentile) 

for calculating the alarm threshold. See Section 3.7 in Unit B for a complete description of the 

parameters. 

 

Figure 124: Defining a triplet model using the Spatial Model Editor window. 
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Figure 125: Selecting the type of triplet model using the 'Link Type' selection box 

 

The charts window for a triplet shows the 'Triplets Limits graph'. This graph shows: 

• The triplet's T value 

•  The T value averaged across the last 3 timestamps, in 10 minute increments (moving average) 

• The critical T value, as computed by the algorithm described in Section 3.7.  

 

Figure 126: Triplets limits chart for a triplet model. 
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4.10 Running simulation scenarios 
 

The simulation screen allows the user to run 'what-if' scenarios and analyze the models' sensitivity to 

possible events in the data. The simulation screen is shown on Figure 127 and is accessible through the 

main Spatial Model screen toolbar, see details in Section 4.1. The user selects (highlights) a Pair model in 

the Pairs tab, and click the "simulations" icon ( ) in the main toolbar.  

In the next few pages, and using Figures 128-130, we will go over the different fields and options 

available in the simulations menu. See the next page for the detailed description. 

 

 
Figure 127: The simulations screen 
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The upper left set of fields in the Simulations screen, marked by the left red rectangle in Figure 128, 
shows a description of the current selected Pair model for simulation. The different fields show the 
Object ID (unique identifier for each object), the object name, and the two stations lined to the object – 
the source and the target station. The type of measurement (and measurement units) for the source 
and target stations is depicted as well. The Low/High valid fields show the range of valid measurements 
for the two stations, as configured by the user in the Model Editor window, as in Section 4.3.  
 
The selection pane and selection buttons on the upper right side of the Simulations screen, marked by 
the right red rectangle in Figure 128, list all triplet models the currently viewed pair model is part of. 
When simulating events for a pair model, events triggered by triplet models including the simulated pair 
will also be listed, if the corresponding triplet models are selected in the "Affected Triplets" selection 
pane.  
 
On the next page, we discuss how to configure the simulated events.  
 

 
Figure 128: Object identification fields and list of affected triplets in the Simulations screen. 
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Figure 129 highlights the different simulation controls, along with additional fields informing the user on 
the models performance. 
The controls and available to the user for configuring the simulated event are: 
The fields shown to the user are: 

• Info field: The current timestamp measured by the target station. 

• Control field: The target station timestamp for simulation – either for the current time or for a 
historic timestamp.  

• Info field: The actual value measured in the target station, for the timestamp selected for 
simulation. 

• Control field: The value to be simulated for the target station at the chosen timestamp. 

• The predicted value for the target station, computed after running the simulation (see remark 
below).  

• Controls for setting the thresholds for the Poor limits, Poor prediction and Triplet alarms, as 
defined at the start of Unit C. 

  
The user may run the simulation by setting the above control fields and clicking the "simulate" button, 

shown as a lever ( ) at the bottom of Figure 129. 
 
 

 
Figure 129: Simulation control fields and alarm thresholds. 

  



144 
 

After running the simulated event, the fields highlighted by a red rectangle at the bottom of Figure 130 
will show the simulated limits as well as alarm indicators. The following outputs are available: 

• Spatial limits and statistical limits for the target measurement at the target node. 

• A field describing the simulated measurement, with respect to the computed spatial limits. If the 
spatial limits are violated, the label will be marked in red. 

• A field showing the ratio between the spatial limits range and the statistical limits range (along 
with the computation method), and stating if  this ratio is below the "Spatial Limits Poor" limit. If 
the ratio is above the alarm limit, an alarm will be triggered and the label will turn red. 

• A field showing the ratio between the prediction error and the actual measurement. If this ratio 
is above the "Spatial Model Poor Prediction" alarm threshold, an alarm will be triggered, and the 
field name will turn red. 

• A label for a no data alarm- if no data was available for the source station. 

• A label for a triplets alarm – if one of the monitored triplet models (selected in the Affected 
Triplets pane)  raised in alarm. 

• Colored fields for no alarm (OK, in green), a failed prediction or a triggered alarm. 

• A counter for the number of simulations run. 
 
The log file for the current simulation can be viewed under the "Log" tab. Previous simulation runs and 
their results can be viewed under the "Runs" tab. 
Sections 4.10.1-4.10.5 exemplify possible outputs generated by simulated events. 
 

 
Figure 130: Indicators for simulation results 
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 - reset 

- export def 

 - to html 

- printscreen 
 
 
 
 

4.10.1 Simulating a No Data Alarm 
 

• In case no data is available for the source station, the following indicator will appear: 

 
 
 

4.10.2 Simulating a Spatial Limits Poor Alarm 

• Consider the case the poor limits alarm is set to 32%. 

 
 

• For our simulation, the generated spatial and statistical limits are the following: 

 
• The ratio between the two ranges is 37.22% (see computation below). Hence, an alarm is 

triggered: 
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4.10.3 Simulating a Spatial Limits Poor Prediction Alarm 

• Consider a simulated setting with the following actual and predicted values: 
 

 
 

• We set the poor prediction error threshold to 0 %. 

 
• The relative error, given by (729.31 − 728.50)/728.50, is larger than zero (by a small amount, 

but still). Hence, an alarm is triggered: 

 
 
 

4.10.4 Simulating a Spatial Limit Violation Alarm 

• Consider a simulated setting with the following actual and predicted values, and the following 

spatial limits: 

 
 
 

 
 
 

• The simulated "actual" measurement is found outside of the spatial limits, and therefore a 
"Spatial Limits violation" alarm is raised: 

 
 
 

4.10.5 Simulating a Related Triplets Forks Alarms 
 

• In case alarms will be raised by any of the monitored Triplet models, the following field will turn 
red: 
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4.11 Viewing Spatial Model Predictions and Alarms in the Thin Client 
This section discusses how the SM, its model prediction and alarms can be viewed in the EDS thin client, 
a desktop based application that can be used for monitoring the water network, without accessing the 
EDS server software directly. 
 
Log-in: Start the EDS thin client using the desktop icon. Figure 131 shows the log-in screen. Type in the 
server name, username and password as supplied by Decision Makers LTD. For the remote option, click 
'yes', if you are connecting to a remote server, and false otherwise. Click log-in. 

 
Figure 131: EDS thin client log-in screen. 

 
The main screen and map: Figure 132 shows the main screen for the Thin Client. The map at the center 
of the screen shows the different station locations, with icons showing their type and status. A list of 
stations on the left shows the current nodes in the network, their status, alarms and description. The 
last timestamp monitored appears as well. 

 
Figure 132:EDS thin client main screen and map. 



148 
 

Pressing the legend icon will show a window as in Figure 144. Positioning the mouse pointer will show a 
tool tip text. See Figure description for a description of icons. 
 

 
Figure 133:Legend for EDS thing client map icon. Object types, from top to button: General station, reservoir in, reservoir out, 
pump, battery-powered station, pressure reducer, general water exit from network. States are color coded, from left to right: 

status OK, High severity alarm, medium severity alarm, low severity alarm, no communication and model disabled (not 
monitored). 
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Site data: Clicking on a site will present it's current data under the "Selected site data" panel. 

 
Figure 134: EDS thin client "selected site data" panel 

 
Site events: Clicking on a site will present it's current events under the "events" panel. 

 
Figure 135: EDS thin client "selected site events" panel 

 

File Menu: Clicking on the menu titled "file" will show the options depicted in Figure HHH. 

 
Figure 136: EDS thin client file menu 

Alarms Center: By Selecting the alarms center, a window as in Figure 137 will appear, showing all available 
alarms. 

 
Figure 137: EDS thin client Alarms Center. 



150 
 

Clicking on the "Spatial model" item under the "File" menu will show the "Spatial Model View" window, 
discussed in the next subsection. 

4.11.1 The Spatial Model View in the EDS Thin Client 
This section covers the Spatial Model view in the EDS thin client. This view is accessible through the 
"Spatial Model" option, under the "File" menu in the EDS thin client. Figure 138 shows the Spatial Model 
View, with it's tab, selection drop down boxes and toolbar. In essence the Spatial Model View is a simpler 
version of the Spatial Model manager presented in Section 4.1. The main change between the manager 
and viewer is that models and definitions cannot be changed from the viewer. 
 
The pairs tab is shown in Figure 138, with the pair descriptive field and state indicators shown in Figure 
76 in Section 4.1 
 

 
Figure 138: Pairs tab in Spatial Model Viewer in the  

The Spatial Model Viewer toolbar contains the following options: 

 - See model definitions 

 - Refresh view 

- See charts 

 - Export table to file 

 - See selected SM object on map 
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Focus on object in map: By clicking on an SM object and then clicking on the "see select SM object on 

map icon" ( ), the map in the EDS thin client will focus on the selected object. See Figure 139 for an 
example of a map focused on an object (A pair object with ID 45). 

 
Figure 139: An example for a map focused on an object after clicking on the "map focus" icon. 

 
Reports and alarms: Current alarms, historical alarms and reports can be viewed through the Alarms and 

reports panel, shown in Figure 140. This panel is similar to the Alarms and Reports panel shown on Figure 

81 in Section 4.1. 

 
Figure 140:Alarms and reports panel in the EDS thin client 
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Panel with key indicators: A panel showing the key indicators for each pair is available as well, see Figure 
141. 

 
Figure 141: A panel showing key indicators for each pair model, in the EDS thin client. 

 

Graphs: Time series graph, error histograms, Source vs Target and Actual vs. Predicted graphs are 

available for each pair model, by pressing the charts button ( ). Figure 132 shows an example for an 

Actual vs. Predicted graph for a Pair model in the EDS thin client. Figures 143 and 144 show a histogram 

for spatial model event lengths, and a time series comparing predictions, measurements, and alarms 

thresholds, respectively. 

 
Figure 142: An example for a graph comparing actual and predicted value for a Spatial Model pair model in the EDS thin client. 
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Figure 143: An example for a histogram of spatial model event lengths, for a Spatial Model pair model in the EDS thin client. 

 

 
Figure 144: An example a time series graph comparing predictions, measurements, and alarms thresholds, for a Spatial Model 
pair model in the EDS thin client. 
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4.12 Generating reports 
This section discusses how aggregate reports can be generated for historical alarms. 

Figure 145 shows the "Alarms & Reports" tab in the Spatial Model Viewer. In order to view 

aggregate level reports, select aggregate alarm reports (Step I in Figure 145), select the report type 

(Step II in Figure 145), and click the refresh button (Step III in Figure 145). 

 

Figure 145: Selection of aggregate alarm reports and report type. Steps for selecting aggregate reports are numbered on the 
figure. 

4.12.1 Report Types 
Report No. 1 lists all SM objects, along with their types, stations, measurements, cluster identities, 

configured network regimes and Delay time for alarms. An example for the report is found in Figure 

HHH. 

For the next reports, an example of the report follows after the report description. 

Report No. 2 lists the times and dates each model performed flow time learning and testing for the 

measurements at the monitored end nodes. 

 

1 
2 

3 
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Report No. 3 lists the number of alarms of each type, across the system, with the number of open 

and closed events, and the average time span of an event in minutes.  

 

Report No. 4 lists the total number of events of each type, for each pair in the system.  

 
Report No. 5 lists the total number of events, by type, for each cluster of stations in the network.  
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Report No. 6 shows a cross-tabulation for the number of events by event type and measurement 

type. 

 
 

Report No. 7 shows a cross-tabulation of the number of alarms, by alarm type and site type 

(reservoir in, reservoir out, Battery Monitor, or Pressure reducer). 
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Report No. 8 lists the total number of events by event type (see legend below), and Site ID. 

 

 

 
 

Report No. 9 the distribution of events time, by 10 minute bins (last bin is for all events time larger 

than 1 hour), for each network site. 
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Report No. 10 lists all object parameters, for all SM objects. An example for a single object is found 

below. 
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Report No. 11 lists all historical events, by station, events time, measurement, and event type. 
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4.13 Quiz for Unit C 
 

1. What types of models are available in the Spatial Model? 
 

2. What types of alarms are can be raised by the spatial model? 
 

3. What are the possible network regimes the SM may be in? 
 

4. When is a "poor statistical limits" alarm raised? 
 

5. When is a "poor prediction" alarm raised? 
 

6. What is the role of the delay time in alarm generation, and how does it affect the alarms raised? 
 

7. What type of charts are available in the Spatial Model? 
 

8. What types of reports are available in the Spatial Model? 
 

9. What parameters affect flow time estimation? 
 

10. How can the credibility of flow time estimates be assessed? 
 

11. Why would the user select to copy flow time estimates from one pair model to another? 
 

12. Briefly explain what is the prediction model used to predict the target node measurement value. 
Explain what are the explanatory and predicted variables, and how flow time is taken into 
consideration. 

 
13. What parameters are used for configuring the prediction values? 
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Appendix A – Additional graphs for flow time estimation and cross 

validation 
This appendix shows Score function graphs for additional models. 

A.1 additional graph for flow time estimates by regimes 
Figures 146-153 show score functions for different objects 

 

Figure 146: Score function for objects O164,O166,O167, three pair objects for the same source and target stations, using 
different measurements. Score functions for measurements in the same regime were normalized to have a maximum of 1 in 
each subplot so that the estimated flow-time (X coordinate of the maximum) could be compared for estimates obtained from 
different measurements. 
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O69:

 

Figure 147: Score function for objects O69, for 16 regimes. Score functions computed based on Conductivity measurements. 
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O76:

 

Figure 148: Score function for objects O76, for 16 regimes. Score functions computed based on Conductivity measurements. 
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O107: 

 

Figure 149: Score function for objects O107, for 16 regimes. Score functions computed based on Conductivity measurements. 
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O116

 

Figure 150: Score function for objects O116, for 16 regimes. Score functions computed based on Conductivity measurements. 
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O240: 

 

Figure 151: Score function for objects O240, for 16 regimes. Score functions computed based on Conductivity measurements. 

 



167 
 

O164:

 

Figure 152: Score function for objects O164, for 16 regimes. Score functions computed based on Conductivity measurements. 
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O186 

 

Figure 153: Score function for objects O186, for 16 regimes. Score functions computed based on Conductivity measurements. 
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A.2 Additional graph for error estimates for estimated flow times 
Figures 154-158 show cross-validation estimates of flow times for different objects. The cross validation 
procedure is presented in Section 3.4. 
Note that for some Saturday-preday and Friday Evening Regimes, flow times are large and cross 
validation estimates do not agree. 
 
O116 -  

 

Figure 154: Score functions for cross-validations, for object O116. 
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Object -O76 

 

 

Figure 155: Score functions for cross validations, for object O76. 
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O240 -  

 

Figure 156: Score functions for cross validations, for object O240. 

 

  



172 
 

O164 -  

 

Figure 157: Score functions for cross validations, for object O164. 
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O186 -  

 
Figure 158: Score functions for cross validations, for object O186. 
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Appendix B – Additional graphs for the triplets-gamma hypothesis 
This appendix shows additional examples for the distribution of T statistics, and their fit to gamma 

distributions. 

 

Figure 159: A sample of data points from Triplet 470, one hour intervals 

 

Figure 160: Comparison between the data shown in Figure 159, to the best fitted gamma distribution. Subplots show a 
histogram comparing the data to the maximum-likelihood fit, Q-Q plot, Empirical and theoretical CDFs and a P-P plot. 
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Figure 161: A sample of data points from Triplet 476, one hour intervals 

 

 

Figure 162: Comparison between the data shown in Figure 161, to the best fitted gamma distribution. Subplots show a 
histogram comparing the data to the maximum-likelihood fit, Q-Q plot, Empirical and theoretical CDFs and a P-P plot. 
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Figure 163: A sample of data points from Triplet 308, half hour intervals 

 

 

 

Figure 164: Comparison between the data shown in Figure 163, to the best fitted gamma distribution. Subplots show a 
histogram comparing the data to the maximum-likelihood fit, Q-Q plot, Empirical and theoretical CDFs and a P-P plot. 
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Figure 165: A sample of data points from Triplet 318, half hour intervals 

 
Figure 166: Comparison between the data shown in Figure 165, to the best fitted gamma distribution. Subplots show a 
histogram comparing the data to the maximum-likelihood fit, Q-Q plot, Empirical and theoretical CDFs and a P-P plot. 
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Figure 167: A sample of data points from Triplet 31, one hour intervals 

 

 
Figure 168: Comparison between the data shown in Figure 167, to the best fitted gamma distribution. Subplots show a 
histogram comparing the data to the maximum-likelihood fit, Q-Q plot, Empirical and theoretical CDFs and a P-P plot. 
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